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Preface 
 
Dear colleagues,  
 
We are delighted to welcome you in Málaga, Spain, where we are going to celebrate 
the 7th International Workshop on Folk Music Analysis (FMA) from 14 to 16 June 2017. 

This International Workshop brings together researchers from the field of 
ethnomusicology and the field of computational and analytical musicology. This 
Workshop will be a perfect framework to deal with topics related to musicology, 
ethnology, engineering and computer sciences including signal processing, pattern 
recognition, applied mathematics, etc. 

FMA 2017 will provide the attendants with a fantastic forum to share research, 
thoughts, needs and discoveries between ethno-musicologists, musicians, librarians, 
students, museum curators, computer science experts and music information retrieval 
researchers to foster the creation of cross-disciplinary collaborative networks and the 
development of new interdisciplinary tools, methods, techniques and ideas to 
promote the enrichment of music, specially folk music, and the preservation and 
dissemination of World's musical cultural heritage.  

This year FMA 2017 will feature 2 Keynote Talks, 1 Tutorial, 4 Oral Sessions and 2 
Poster and Demo Sessions.  

Besides this interesting Scientific Program, FMA 2017 also aims at giving the 
participants an unforgettable stay. In the evenings, several Social Activities will be 
provided. In all of them, the aim will be to promote interaction between participants 
and, at the same time, to show typical Folklore of Malaga, typical places and typical 
drinks and food.   

We want to say thank you to all the people that have made FMA 2017 possible: the 
authors that sent their contributions, the reviewers, the FMA 2017 attendants, the 
FMA 2017 Conference Committee and, specially, the FMA 2017 Local Committee. We 
are very grateful to our sponsors Universidad de Málaga-Andalucia Tech, 
Departamento de Ingeniería de Comunicaciones, E.T.S.I. Telecomunicación and to our 
collaborators Málaga Convention Bureau and Ayuntamiento de Málaga. 
 
We have worked hard preparing everything so that FMA 2017 is a big success and we 
hope that we all enjoy these days. 
 

Best regards, 
 

Isabel Barbancho 
Lorenzo J. Tardón 

FMA 2017 General Chairs 
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Keynotes 



Keynote 1 

Prof. Dr. Lars-Christian Koch is Head of

Department of Ethnomusicology and Berlin Phonogram 
Archive at the Museum of Ethnology in Berlin (Germany) 
and Professor for Ethnomusicology at the University of 
Cologne and Honorary Professor for Ethnomusicology at 
the University of the Arts in Berlin. He was Guest 
Professor at the University of Vienna and at the 
University of Chicago. He has conducted field work in 
India, as well as in South Korea. His research focuses on 
the theory and practise of North-Indian Raga-Music, 
organology with special focus on instrument 
manufacturing, Buddhist music, popular music and urban 
culture, historical recordings, and music archaeology.  

Models of oral transmission of music - Permutation as a basic concept of 
Raga elaboration in North Indian Music 

Oral transmission of musical content are cultural strategies in diverse forms. Especially 
on the Indian Subcontinent, these strategies are obvious as during the elaboration of a 
Raga in North Indian Music the century old concept of permutation plays a central role 
it affects the melodic structure of a raga resulting in a different melodic concept 
compared to Western Music. Some analysis of selected melodic patterns from Indian 
raga music will illustrate these differences. 

Furthermore, permutation is one of the main aspects of teaching North Indian Music, 
which generates a wide vocabulary of patterns as a repository for improvisation within 
a set melodic framework. By means of case studies of selected raga-s this lecture 
should illustrated how the ability to improvise is taught in a traditional way and how 
this art is applied in performance. 
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Keynote 2 

Dr. Dolores Vargas Jiménez (Flamenco 
dancer) Dolores Vargas Jiménez was born in Málaga.

She received the B.E. degree in Geography and History 
and her Ph.D. degree from the University of Málaga, 
Spain. Her Ph.D. Thesis "Picasso: Iconography of Dancing" 
was awarded the "Premio Málaga de Investigación" by 
the Academies "Bellas Artes de San Telmo" and 
"Malagueña de Ciencias" in 2013. Now, she teaches 
history at the "Escuela Superior de Turismo Costa del Sol 
de Málaga". She combines her academic facet with 
flamenco dancing. She has travelled around Spain, 
Canada, Sweden and France showing the flamenco 
dancing. In some of her performances, she is 
accompanied by her sister Mercedes.  

Musical interpretation through the iconography of the dance in Pablo 
Ruiz Picasso  

In the artistic production of Pablo Ruiz Picasso there are multiple examples of how 
popular music, translated in dance poses, features in the works of the Malaga artist. 
The images of dance in Picasso are the result of his emotional and sensorial experience 
while hearing the music, and his contemplation of the dance. 
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MUSICAL INTERPRETATION THROUGH THE ICONOGRAPHY 
OF THE DANCE IN PABLO RUIZ PICASSO 

 
Dolores Vargas Jiménez, Ana María Barbancho Pérez 

     Universidad de Málaga, ATIC Research Group, ETSI Telecomunicación,  
Dpt. Ingeniería de Comunicaciones, Campus Teatinos, 29071 Málaga,  Spain 

lolivargas@hotmail.com, abp@ic.uma.es 
 
 

ABSTRACT 
 
Popular, traditional or folk music has been 
present since its origins in the world of the 
History of Art. The different artistic 
representations, understood as the 
manifestations of the spirit, collect and capture 
sequences of the vibration and impact of music 
interpreted by dance, which was considered the 
first of the arts, just as the art of music was born 
with the human being . 
 In the artistic production of Pablo Ruiz 
Picasso there are multiple examples of how 
popular music, translated in dance poses, 
features in the works of the Malaga artist. The 
images of dance in Picasso are the result of his 
emotional and sensorial experience which he 
perceived listening to the popular  music and 
contemplaty  the dance. 
 

 
1. INTRODUCTION 

 
To speak of the artist, considered the genius of 
the Art of the XX century, and try not to 
reiterate is quite complicated, since we could 
practically say that his life and his work have 
been completely historyd. Many reflections 
have been made about the Picassian world, 
since almost everything has been scrupulously 
reviewed not only by art historians and plastic 
artists, but also by psychologists, writers and 
musicians. 
 Pablo Ruiz Picasso was a creator of 
great charisma and personality. After the study 
of his production,  new approaches arise, a 
different reading of the artistic medium. 
 But what is really interesting is that 
before being in contact with the world of dance, 
it was a theme that appeared continuously in his 
work from his earliest childhood. Even after 
divorcy  his wife, a Russian dancer and the way 
of life that followed in this time, he continued to 
resort to this inexhaustible source of sensations,. 
He continued to surround himself with musics 
and dancers. In addition their parties and 
meetings, in one way or another, were always 
brought to live with dancers. 

 The encounters with artists from other 
disciplines brought him inspiration, as if part of 
that internal force was transferred to him to be 
able to contemplate it and later, thanks to his 
retention capacity, he transferred this to his 
work. 
 He drew first everything that he was 
interested in, although later or not he may not 
have taken it to his canvas or other supports to 
shope. In all the artistic techniques that he 
carried out we found the influence of the dance 
movement and of course with his own music. 
 Although Picasso was also encouraged 
to actively participate in the various improvised 
dances around him, we thought that the greatest 
enjoyment was experienced through the 
visualization of this art. Experts in psychology 
point out the importance of the environment that 
surrounds a person the first few years of his life. 
The retentive capacity is in full development 
and the child absorbs everything he/she sees, 
touches, smells, stays in his/hers subconscious 
forever. 
 The dance has fascinated artists of all 
guilds, but in particular for painters it has been a 
way of identification, an instrument to be able to 
communicate the movement in their creations, 
to create a space full of rhythm and sensuality 
without limits. Kandinsky (1999) duelved into 
the importance and complementarity of the arts, 
the inspiration of one art in another only 
succeeds if the inspiration is not external but of 
principle. Each art possesses its forces, which 
can not be replaced by those of another art. 
 Throughout history, dance never 
ceased to be art but has not always been 
recognized and integrated within the 
classification of the Arts. From the XV century 
it is cataloged as an elegant and pleasant art, 
next to Painting, Sculpture, Architecture, Music, 
Poetry, Theater and Dance, all of them 
separated from Crafts and Sciences. Already in 
the sixteenth century, Francesco from Holland, 
coined the term of Fine Arts, referring to Visual 
Arts. In the seventeenth century in the treatise 
on Architecture of François Blondel will include 
Architecture, Poetry, Eloquence, Comedy, 
Painting and Sculpture, later adding to Music 
and Dance. Discovering that all the Arts have a 
factor in common: all are a source of pleasure 
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for those who experience them, sharing the idea 
of beauty. But it will not be until the 18th 
century when Batteaux presents a list of Fine 
Arts: Painting, Sculpture, Music, Poetry and 
Dance, to be more exact, art of movement, L'art 
du geste, to which he will add Architecture and 
Eloquence. He will be the first to consider the 
Fine Arts as mimetic, an idea that his 
contemporaries did not likes much, it did not 
enjoy popularity but it was quickly accepted. 
 Already in the nineteenth century two 
of them, Music and Dance, will be separated, 
leaving three visual arts: Architecture, Sculpture 
and Painting. Mimesis will keep together Music, 
Dance and Mimicry, its function being to 
externalize the deepest feelings, those of the 
soul. With dance there appears a flowering of 
rhythmic impulses from which we can obtain 
great amount of sensations. Sometimes gestures 
can be more expressive than multiple words. 
Françoise Delsarte (1811-1871) found after his 
research that every emotion or brain image 
corresponds to a movement or at least an 
attempt to movement. 
 Perez Rojas (1994) pointed out how the 
musical feeling is also translated in the 
serpentine movements of the figures. A soft 
music produced by the whisper of nature or the 
chord of a hidden violin which invites the 
dance, this will be translated by the artists 
sensitive to it. There are many examples of 
Spanish artists that will vibrate with this 
interpretation. 
 For Picasso the whole interest of the 
Art is in the beginning, after the beginning 
comes the end. The celebrations carried out by 
the Málaga society of the time in the years of 
his childhood and the vacacionales stays of his 
youth, will be engraved in his eyes. What we 
perceive influences when expressing ourselves, 
it is the reaction to the perception translated in 
the pleasure of the contemplation. The 
estimation of artistic values is relative and 
depends on education and the socio-cultural 
environment that surrounds us to a great extent. 
 Below we show two figures where the 
musical instruments and some elements together 
with the different sections of Flamenco are 
present in the different artistic stages of Picasso. 
 Following the biography of the artist, 
in the following six sections we will see how 
popular music is present during his life, and thus 
is reflected in his work. 
In the section Everything begins in Malaga, we 
will explore his beginnings. In the Cafes 
Cantantes we will analyze some works inspired 
by these very famous places in Spain. During 
his first visit to Paris, new music is discovered 
by Picasso. With the origin of Modern Art, the 
artist turns his eyes towards the exotic and the 

known, in the same way that is inspired by the 
traditional to decorate the College of Architects 
of Cataluña. The women who had a presence in 
his life, were also shaped in their compositions 
as well as the women of the entertainment world 
dedicated to music and dance. 
 

2. EVERYTHING STARTS IN 
MÁLAGA 

Pablo Ruiz Picasso was born in Malaga, on 
October 25, 1881 in the current Plaza de la 
Merced. The Malaga society was going through 
difficult times from the economic point of view. 
The pictorial art will accompany Pablo Ruiz 
Picasso from his birth. His father, as well as a 
painter, also worked as a teacher of Drawing at 
the School of Arts and Trades of San Telmo, 
being named in 1879 as a curator of the 
Municipal Museum, founded by the painter 
Muñoz Degrain. Its first ten years of life, 
fundamental in the formation of a person, will 
take place in Malaga. 
 Experts in psychology point out the 
importance of the environment that surrounds a 
person the first few years of his life. The 
retentive capacity is in full development and the 
child absorbs everything he sees, touches, 
smells, stays in his subconscious forever. The 
experiences in his hometown that he 
remembered most perfectly, were not images of 
childhood fleeting. Even if he stopped living in 
it at almost ten years, every summer or holiday 
period until he was nineteen he used to return. 
 From an early age he would have a 
direct experience with the festive events 
developed in these years. We thought that he 
would see dance in each of the celebrations 
celebrated in his native city of the time: in 
verbenas, fairs, May crosses, celebration of 
Corpus Christi, flamenco shows in the singing 
cafes (although the entrance to the children to 
these places Was allowed). We could say that in 
each of these celebrations music and dance were 
indispensable protagonists. From his first 
drawings, action and movement are already 
present in his works based on perception, 
agglutinating elements and using codes that 
awaken feelings. 
 Picasso prided himself on the fact that 
in his childhood he used to frequent and interact 
with the gypsies who lived in the area adjoining 
the Muslim fortress of the Alcazaba in Málaga, 
in the so-called Chupa and Tira or Mundo 
Nuevo neighborhoods. The artist told how they 
had taught him to love cante jondo and to dance 
flamenco in a rudimentary way. The gypsies 
taught me many tricks, he used to say 
mysteriously (Richardson 1995). The world of 
flamenco will fascinate you throughout your 
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life, felt something special when listening to the 
sounds of the guitar or enjoy the contemplation 
of the majesty of the dance. 
 He was proud of that inheritance 
acquired during his childhood. He experienced 
an intense emotion for the world of bulls and a 
great sensitivity for "lo jondo". The deep, the 
inner. It is the peculiar adjective to describe the 
feeling in flamenco; To those letters that show 
life, to sing in grief and in joy: what is lost is 
sung, as Arrebola (1986) collects in the singular 
way of externalizing art in the world of 
flamenco. 
 As a child he would be a participant in 
the festivals and cultural events organized in the 
Lyceum of Malaga. Conferences, concerts, 
floral games, recitals and dances took place in 
the cultural life of Málaga at the time. From his 
hometown he would begin to absorb everything 
related to the artistic world. 
 The economic situation of the family 
Ruiz Picasso became more and more 
complicated. Jose Ruiz decides to change his 
place of professor in the School of Malaga by 
another like professor of drawing in the institute 
La Guarda of La Coruña. The change will be 
radical. Picasso's younger sister, Conchita, fell 
ill with diphtheria, dying on January 10, 1895 at 
the age of seven. This dramatic event will mark 
the whole family that will live in sadness. Two 
months later, he will accept the vacancy of 
professor of drawing in the Lonja of Barcelona. 
Picasso recreates a typical local folk scene in 
1895 and Woman with tambourine, Picasso's 
parents showed great interest in the artistic and 
cultural world of his time, as well as being great 
fans of the show business. 
 The first major works that he will 
develop in Barcelona will be based on the 
religious theme, very tasteful of the time and 
very appropriate for a young man who begins 
with his pictorial work. In the first years of his 
stay in the city of Barcelona there are already a 
series of dancers combined with other scenes. In 
1896 he began to draw interior scenes with 
dancers accompanied by a guitarist or by a 
pianist perfectly located at the foot of the stage, 
in a lower plane than the dancers. As an 
example, Café de Chinitas, a famous café in 
Malaga, which Picasso could possibly attend in 
his holidays in his hometown. 
 These types of scenes were responsible 
for making the customs and way of life known 
in a very peculiar way in the south of Spain, 
where the festive party of singing and dancing 
was renamed juerga flamenca. But not only by 
foreign artists but also by Spanish. 
 In the period of 1897-1898 he become 
student of the Royal Academy of Fine Arts of 
San Fernando of Madrid. There are not too 

many preserved works of this period. The 
atmosphere did not accompany him too much, a 
very hard winter, loneliness and contracting 
scarlet fever will diminish the restless spirit of 
the artist. But in the midst of all this, a scene 
starred by two Flemish bailaoras (picture 17) 
arranged in space in a singular way. In the lower 
left corner is occupied by the flamenco painting, 
that is to say by the accompaniment of the 
bailaoras. Three smiling female profiles seated 
very well defined direct their eyes towards the 
front where the bailaoras should be, that in this 
case occupy the superior zone of the paper. 
Usually in the cafes concerts the performances 
were represented on the tablao or stage, 
remarkably elevated of the public for its optimal 
visioning. Together with the women sitting in 
the same position the guitarist from which we 
can observe his saddened and tired countenance. 
Beside him, another female figure with his face 
partially hidden by the guitar's neck. 
 To recover from his poor health, 
Picasso decides to accompany his friend 
Pallares to his hometown, Horta de Ebro. There 
he will work in the field performing the 
different agricultural tasks that would shape his 
notes, drawings and oils. Sample of it is the 
composition Customs Aragonesas that would be 
presented in the National Exhibition of Bellas 
Artes of Madrid of that same year, obtaining an 
honorific mention. Once again pick up the 
essence of the place through the popular music 
of the locality. 
 In the drawing scene of tablao 
flamenco, a woman stands gaudily seated (the 
body facing the spectator and the head in 
profile), left hand in the waist and right on the 
leg, rising on outlined lines as a tablao. Along 
with her Picasso also draws a concentrated 
guitarist. On this same sheet and on the left side, 
another woman standing wrapped in her shawl 
repeats the position of her face shown equally in 
profile. 
 

3. THE “CAFÉS CANTANTES” 
 

From 1896 onwards, there were successive 
drawings inspired by the interiors of the cafes 
cantantes where you could enjoy flamenco 
together with a variety show. In Barcelona the 
tradition of this type of establishments begins to 
develop in the middle of century XIX. These 
premises were responsible for making flamenco 
known to the public, not only in Andalusia, 
where the most famous were found, they also 
proliferated in other places such as Madrid and 
Barcelona. They acquired great fame from the 
middle of the 19th century until the beginning 
of the 20th century. This type of premises had a 
series of characteristics that were very attractive 
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to the bohemian artists of the time. There they 
could enjoy flamenco art along with other 
demonstrations, while the attendants could drink 
and talk animatedly. 
 We find an interesting drawing by 
Picasso titled Café Concierto created in 
Barcelona in 1900, where the Malaga artist 
collects a scene typical of the singing coffees of 
the time. Once again the main character of the 
composition is a dancer in full performance. 
The vigorosidad of the moment is reinforced by 
the figure of the expressive cantaor that 
accompanies the sequence with the sounds of 
his voice. The festive atmosphere and fun is 
perfectly captured by the other characters that 
make up the scene. These are distributed 
between the side boxes, divided into two floors 
and those that occupy the tables distributed at 
the foot of the tablao, focusing their attention on 
the stage. 
 We have found it attractive to compare 
the composition of Picasso with a work by the 
Catalan painter José Llovera and Bofill entitled 
Baile Flamenco made in 1890. If we look at the 
environment, we could say that both images 
collect the same place. There are some 
similarities that we can appreciate, such as the 
distribution of space, the side boxes of two 
floors with similar decoration and even the three 
points of light on both sides of the scene. 
Picasso has neglected some details of the setting 
of the stage, although his work was done ten 
years after the one made by Llovera and Bofill 
and possibly, if it is the same place, it could 
have undergone some transformation. But in 
both illustrations the essence of the place has 
been collected. In the singing cafés flamenco 
coexisted with bowling school dances (totally 
academic), with numbers of magic and singers 
of different styles. There is no doubt that the 
aesthetic and plastic strength of a flamenco 
painting on stage has attracted the attention of 
numerous artists, not only Spaniards but 
foreigners seduced by the exotic and 
picturesque sequence 
 The bailaora, both in the composition 
of Bofill and Picasso, is touched in a wide-
brimmed hat, wrapped in her stylized figure in a 
Manila shawl and possibly in a tail coat, 
although in the Picasso drawing we do not 
appreciate to distinguish it with accuracy. We 
could suggest that both were playing garrotín, a 
very popular dance at the end of the 19th 
century. It is a flamenco club of uncertain 
origin, considered as a genre of import, which 
takes most of its musical elements from 
flamenco tangos of festive air, such as Tangos 
del Camino de Granada. This dance became 
very popular at the end of the 19th century, 
popularizing itself in Catalonia. Its 

interpretation will be lavished by the leading 
tablaos of the country and by the highest 
representatives of flamenco singing and 
dancing. It used to be customary for the bailaora 
to be accompanied by a hat, (currently the use 
of this complement is maintained) to interpret 
the different steps of the choreography, as an 
addition to the verses of the same that say: 
 

Ask my hat, 
My hat will tell you, 

The little nights I spent 
And the light that gives me, 
The garrotín, the garrotán 

Of the vera, vera, vera of San Juan. 
 
 

4. FIRST VISIT TO PARIS 
 

The French capital became the European 
cultural center at the end of the nineteenth 
century, increasing its popularity by the 
different Universal Exhibitions that took place 
there. The Universal Exhibition held in 1900 
had great repercussions in the intellectual circles 
of Catalonia. Picasso sent a work called Last 
moments, being selected and exposed in the 
Spanish section of the decennial of the Grand 
Palais, dedicated to the Spanish pavilion. 
 The taste for the shows would be filled 
in Paris. He made a drawing where the 
development of a belly dance show can be 
appreciated, as Picasso notes along with his 
signature. It must have been very new to be able 
to visualize a show of these characteristics, 
possibly unknown to the artist up to those 
moments, hence the choice of the iconographic 
motif for the letter. Oriental dances, French 
Cancán, Flamenco and festive dances are shown 
before the young Spanish artist. 
 
 
5. THE ORIGIN OF MODERN ART 
 
When we did Cubism, we had no intention of 
making Cubism, but of expressing what we felt 
(Elgar 1958). With this statement Picasso, not 
very fond of having to give explanations, 
showed the procedure followed to lead to this 
new artistic style. Under this intimate and 
personal criterion an important number of 
compositions were born. 
 In them we can find and discover a 
special movement. The figures float in space 
just as dancers do on stage. The rhythm is 
essential in all Picassian artistic creation, both 
pictorial and literary in which he used words, 
figures, musical notes, poems in a loop, the 
beginning is the end, as if it were a letter dance. 
Of difficult reading, the rhythm reappears here 
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as well and of course is strongly present in 
cubism. 
 At first sight it seems to us that the 
works of this period are totally abstract, but this 
is not the case, since Picasso fled from 
abstraction. Brassaï (2002) explains how 
Picasso's painting is made of negotiations and 
eliminations, of ellipsis, of ruptures of forms, 
seems to be born frequently of free invention. 
But even when it seems to be far from reality, 
and even when his work covers every aspect of 
the fantastic or the surreal, its basis is a solid 
realism. The artist always gives us clues so we 
can recognize what is represented. The 
sensations that can suggest us the observation of 
a work of art lie in knowing what we are seeing. 
Gombrich (1987) mentions how pleasure 
derives from recognition. But not only in this, 
but also in the affinity that we can maintain with 
the represented, creating a mental union, an 
identification with the shaped. 
 The Demoiselles of Avignon is about 
the composition that more previous drawings 
realized. Multiple influences we find where the 
oriental dance and the dancer Mata Hari, with 
their exciting poses, acquire all the protagonism. 
Flamenco and more specifically, the Spanish 
guitar is very present during this stage of the 
artist. 
 

6. THE COLLEGUE OF 
ARCHITECTS OF CATALUÑA 

 
In one of the conversations that Brassaï 
maintains with Picasso he explains how in 
Barcelona he had a great impression. That sour, 
bittersweet song. That square full of girls, young 
people. Bags and jackets piled on the floor, and 
around each heap a circle of dancers and 
ballerinas rippling. It was so unforeseen. And 
the seriousness of the faces, tense, almost 
pathetic. Not a burst of laughter, not a smile. All 
solemn. I thought I was witnessing a religious 
ceremony. 
 For Picasso this folkloric dance was 
more than a mere amusement, all people are on 
the same level, regardless of social scale. 
Catalan sardana is nothing more than a 
collective dance whose meaning of ritual dance 
of the sun was forgotten over the centuries in its 
long evolution until reaching the Middle Ages, 
which is as far as our earliest news about it. 
That is why it has been tried to find in this 
dance a symbolism in its eight bars called 
"short" and sixteen "long", as a representation of 
the twenty-four hours of the day.  
 The first symbolize, with their 
melancholy intonation, the dark hours of the 
night, which the dancers execute barely moving; 
But afterwards the sixteen long ones, with their 

intonation of happy and luminous hours of the 
day, that the dancers symbolize dancing fiercely 
until the dance ends, which began with the notes 
of the call of the caramillo, like the song of the 
cock at midnight. Although the dances of corro 
were very habitual, of which there are more than 
one hundred and thirty only in the province of 
Malaga, Picasso related this form of dancing 
with the sardana, typical dance of the Catalan 
folklore. 
 In October of 1960 Picasso realized the 
drawings that decorated the facade of the 
College of Architects of Cataluña and Baleares. 
The technique used to pass the drawings to the 
concrete consisted in drawing these with sand 
blasting under pressure. Inside the building we 
can find two murals designed by Picasso, one of 
them collects a personal interpretation of a 
panoramic view of the city of Barcelona, called 
the mural of the arches and the other inspired by 
the sardana dance. 
 In the mural dedicated to the sardana 
can be identified, through some arches, the 
silhouette of the castle of Monjüit. At the 
bottom and next appears a kind of aqueduct, 
more static than the previous ones. In front the 
face presents a unique composition: two 
concentric sardanas, with the one of the children 
in the interior. The architect Javier Busquets 
was in charge of contacting Picasso and 
proposing the idea of decoration of the building. 
After several conversations he took to the artist 
graphic documents where he could refresh his 
childhood memories in Barcelona, through his 
parties like the fair of Santa Lucia and the 
procession of the Corpus with its giants and 
cabezudos. Picasso saw and remained silent. In 
the final work the prodigious visual memory of 
the artist was captured. Finally on October 18, 
1960, Picasso called Busquets to inform him 
that the drawings were ready. 
 Years later Busquets commented that 
the simple lines in the friezes of the College of 
Architects of Catalonia and Baleares, located in 
the heart of Barcelona in front of the Cathedral, 
are a real effort of synthesis made by an artist of 
eighty years after a long search life Of the 
intimate forms of art. 
 
 
 
 

7. PICASSO AND WOMEN-
DANCERS 

 
Picasso's fascination with the figure of the 
woman is evident throughout his extensive 
artistic production. There are several models of 
woman that he reflects in his work. But there is 
one that appears continuously, which will 
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repeated constantly throughout his life: the 
image of the dancer. These representations 
highlight the passion of the performers when 
they dance. For Picasso contemplation of the 
dance was a source of inspiration, which 
nurtured his creativity. For him these women 
possessed on elf, a special force that he wanted 
to translate into his works thanks to the 
movements of his pencil, pen or brush. Through 
his drawings we perceive sensorial, aesthetic, 
iconographic and technical aspects, by which 
we enter into the artist's intimacy. 
 He was able to choose this feminine 
type for the sensual load that he gave off, but 
also for the bohemian life in which they could 
be found and at the same time, for the image of 
an easy woman with whom to establish intimate 
relationships, although in fact it was not so. Not 
only Picasso will look for certain 
representations. Matisse resorts to 
representations of odalisques. 
 The myth personified in Olga 
collapses, but the woman who dances will 
continue to star in his works until the end of his 
life. And although his next partners will no 
longer be entertainers, the master will like to 
portray them, giving them in their paintings an 
artistic halo. For Picasso dance and dance are 
the movements of Flamenco Art, so rooted in 
his character, producing feelings that no other 
type of rhythm will bring. 
 Statements of the artist himself 
revealed that for him, music was the pasodoble 
and strumming of a flamenco guitar. And 
dancing is those senses swaggering with hips, 
arms to the sky and the rhythmic movement of 
the feet. There are many dancers and dancers 
who draw, paint and record in all their 
trajectory. Some of them we can identify them 
with famous artists of the time, since in Paris 
pass the best stars of the dance of the moment. 
Even during his first exhibition at the Vollard 
Gallery in Paris, he was known as the painter of 
dancers, in the words of critic Gustave Coquiot 
(Daix 1989). 
 Several were the women who passed 
through the life of the artist, those who were 
important appear reflected in his work, with 
whom he shared his life draws or paints them in 
a dance attitude. All his women in one way or 
another immortalize them by dancing. Picasso 
liked to represent them wrapped in rhythm and 
movement, loaded with sensuality that we can 
interpret as a dance. 
 
7.1. Sentimental partners 
 
A new woman appears and is born an 
unpublished form of her art, an unforeseen 
mode of expression (Cabanne 1982). 

 Rosita del Oro, an acrobat of the 
circus of Tivoli from 1897 to 1900, is the first  
relationship to exist. It will be thanks to Rosita 
that Picasso knows and is fascinated by the 
circus world (Matabosch 2006). 
 Fernande Olivier, 1904-1911, the 
drawing Fernande dansant appears next to the 
artist Paco Durrio who used to play the 
flamenco guitar, Picasso said that he played for 
malagueñas (Richardson 1995). 
 Eva Gouel, begins the relationship 
with Picasso in 1911 until 1915 that she passes 
away. 
 Gaby Depeyre comes to the artist's life 
in 1915, she sang and danced in a cabaret in 
Paris 
 Irene Lagut maintained a relationship 
with Picasso during the years 1916 and 1917. 
She worked at a Music Hall in Paris. 
 With the arrival in 1917 of Olga 
KoKkova and after several failed relationships, 
the artist marries this Russian dancer. He never 
painted her dancing. They had a son, Paul. 
 In 1927 he met young Marie Therese 
Walter, she was 17 years old, Picasso 50. Born 
of this relationship was Maya in 1935. Both 
portrays are of her dancing. 
 Dora Maar met Picasso in 1936, she 
was a woman ahead of her time: photographer, 
painter, sculptor and poet. She photographed the 
process of Guernica. 
 In 1943, Picasso meets the young 
painter Françoise Gilot. From this relationship 
were born two children: Claude and Paloma. 
Françoise is the protagonist of his production, 
example of, it is the composition the joy of 
living of 1946. She leaves him in 1953. 
 Picasso met Jacqueline Roche in 
1952, married her in 1961, after being widowed 
by Olga. He shared with him the last twenty 
years, she was flooding his work. The Spaniard 
portrayed her like Lola de Valencia, famous 
Spanish dancer portrayed by Manet. 
 
7.2. Dancers in their strokes. 
 
The dancer, (Starobinski 2007) assumes an 
illusory role, represents a flower, a bird, a 
divinity or a personage of the cultural tradition. 
For the artists, the dancers have been a source of 
expiration. Before the retinas of Picasso the 
muses of the dance wandered, immortalizing 
them with their strokes. 
 Here are some of them: 
 The Bella Chelito, stripper dancer of 
the time dazzled the artist when he played the 
flea in 1902. Picasso remembered his whole life 
this song. 
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 Sada Yakko, Japanese dancer to whom 
Picasso made an advertising poster and several 
drawings in 1900. 
 La Nana or Enana, made a portrait in 
1901, just as it had been preceded by painters 
painting the famous Spanish dancers of 
European and American fame. 
 Jeanne Bloch, famous dancer of 
cancan, 1900. Picasso was very attracted by this 
type of dance. 
 La Bella Otero, in 1901 the woman 
with jewels, inspired by it, performed the work. 
Famous Spanish dancer known worldwide. 
 Jane Avril, muse of the painter 
Toulouse Lautrec, was one of the most famous 
cancán dancers. Picasso portrayed it twice, in 
1901 and 1902. 
 Mademoiselle Bresina, Spanish 
dancer, portrait of 1903. 
 Mademoiselle Leonide, 1910, gives us 
the feeling of floating. This drawing, which 
appears cubist and realistic elements appears in 
a book by Max Jacob. 
 Olga with a mantilla, although she 
never painted it dancing if she wanted to paint it 
like a typical Spanish woman in a mantilla in 
1917, yes, an improvised mantilla, since it was 
the crochet rug that had the table of the hotel 
where they were staying. Picasso will again 
innovate with its blankets of the costumes of the 
Russian Ballets in 1919. 
 Blanquita Suárez Picasso painted it in 
1917, after seeing her performing at the Tivoli 
Theater in Barcelona. 
 For Picasso, the figure of the dancer or 
bailaora will appear accompanied in his artistic 
production by the picador, 1960 series and by 
the harlequin, as the numerous examples show. 
In one of his last works, Picasso goes back to its 
origins, refers to the traditional folklore of 
Malaga, the Verdiales. 
 

 
8. CONCLUSIONS 

 
Artists receive influences from all the arts, 
being essential the integration of each other, to 
achieve an enriching synergy that results in an 
inexhaustible source of inspiration. In this 
Malaga artist the most diverse manifestations of 
art meet and converge, being an example 
impossible copy. For the artist, music and 
dancing meant fun, sexual union and passion, 
but above all, feeling. 
 We find this passion for dance in the 
interpretation he makes of the women he 
portrayed, although he was not inspired so much 
by the classical dancers as by those who 
interpreted other more vibrant styles for the 
artist: flamenco dancers, cancán dancers or 

poses of oriental dances. In this way the artist 
fled from the embedding of the academic 
gestures of classical dance. However she also 
collected snapshots of these classical ballet 
dancers during their moments of rest, where 
they really showed themselves as they were. 
 We are faced with a new vision of the 
work of Picasso. An interesting quote by the 
German philosopher Nietzsche (1998) explicitly 
illustrates the definition of the untiring quality 
of Picasso's creation: what distinguishes a 
genuine original head is not to be the first to see 
something new, but to see old things as new, 
seen all over the world and not taken into 
account by anyone. 
 A historian can approach the patterns 
and influences that an artist can receive and 
channel in his works, but he can not delve into 
the intimate experiences and the final decisions 
inserted in them. 
The creation never had limits for the Málaga 
artist, wrapped in an eternal rhythm and 
movement, without ties or conventions, in a 
free, active and alive way. Pablo Ruiz Picasso 
always found inspiration loving, hating, painting 
and  of course, dancing. 
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Title: The Persian musical system and the dastgàh recognition 
Peyman Heydarian, London Metropolitan University  

Outline of the tutorial 
A tutorial on Persian music analysis, covering the intervals; the dastgàh (the underlying system of Persian 

music); forms and composition; and the MIR methods for Persian dastgàh recognition. 

The dastgàh, the underlying modal system of Iranian classical music, is a phenomenon similar to maqàm in 

Turkish and Arabic music. It usually represents the scale and tonic, and is to some extent an indication of the 

mood of a piece. Methods for computational identification of the tonic and scale in Persian audio musical 

signals will be presented. The feature sets, chroma (a simplified spectrum) and pitch histograms; the 

classifiers, Manhattan distance, dot-product, and bit-mask; and theoretical and data-driven templates will be 

presented and compared. Theoretical templates are constructed, either using the scale intervals or by making 

a note histogram of existing pieces. Data-driven templates are made by calculation of the chroma of available 

audio samples. 

1.1 Persian Intervals 

There are different views on Persian intervals [1, 2, 3].  Vaziri suggested a 24-tone equal temperament (24-

TET), by analogy with the Western 12-TET scale. He defined sori (  ) and koron (  ) symbols to show 

half-sharp and half-flat quartertones, which are widely used in Iranian music [1]. However, in musical 

practice the quartertones are not fixed and, depending on the scale, the piece, or the performer’s mood, they 

can be less or more than an equal quartertone. Farhat [2] suggests that in addition to the Western semitone 

scale, two intervals between a semitone and a whole (small and large variants of the three-quartertone), and 

an interval between a whole tone and a minor third (approximating to one and a quarter tones) should be 

recognised.  

From a signal processing point of view, all we need to know that is that in addition to Western intervals, 

there are flexible quartertones in Persian music, which lay between two neighbouring notes a semitone apart, 

and that only a few of them are used in practice. The Persian repertoire can be played with 13 different notes: 

7 diatonic notes, 3 semitones and 3 quartertones [2, 3]:       

E   F  F  #F   G  #G   A  B   B   C  C  #C   D 
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1.2 Dastgàh  

Persian music is based on a modal system consisting of seven main modes and their five derivatives: shur, 

abu'atà, bayàt-é tork, afshàri, dashti; homàyun, bayàt-é esfehàn; segàh; chàhàrgàh; màhur; ràst-panjgàh; 

and navà. They fall into five different scale categories: homàyun and bayàt-é esfehàn, chàhàrgàh, shur, 

màhur and segàh. The scales are provided in [3]. Figure 1 shows the five principal scales, where 24-TET is 

assumed. Both fixed and moving accidentals are shown.  

Figure 1: Scale intervals, based on 24-TET 

2. DASTGAH ANALYSIS FLOWCHART

A dastgàh implies particular scalar intervals, a tonic, and modulations, and is to some extent an indication of

the mood (emotional character) of a piece.  The attributed emotions are usually culture-specific and depend

on lyrics. A human listener recognises a dastgàh by one or more of these ways:

• Perceptually: based on the culture-specific mood of a piece
• Through melody/theme recognition: by matching the melody with known patterns
• Based on the intervals, the frequency of their occurrence, and order of the notes

The last two are clearer computationally. The bidirectional arrows between mode and melody (Figure 2) 

show that melody recognition reveals the mode and the mode can be used to improve melody recognition 

systems. A  full dastgàh performance is  recognised by tracking the modulations and the respective changing 

tonics. 

Proceedings of the 7th International Workshop on Folk Music Analysis, 14-16 June 2017, Málaga (SPAIN) 
ISBN: 978-84-697-2303-6

25



Figure 2: Dastgàh identification flowchart 

Intended audience 
Non-Western MIR researchers, ethnomusicologists, computational musicologists, Iranian and central Asian 

researchers 

Peyman Heydarian’s biography 
Peyman Heydarian, born in Shiraz, Iran is an award-winning music scientist and santur virtuoso. Peyman 

started learning Persian music under the supervision of music masters, including Mojtaba Mirzadeh and 

Pashang Kamkar. His main instrument is the santur. He also plays the daf, piano, tar, violin, bouzouki, 

baqlama and harmonica. He has developed his own performance style on the santur and has adopted 

innovative tuning systems and techniques to play a multi-ethnic repertoire on the instrument.  

Peyman has taught music and signal processing courses at different universities and has established and 

presided over a number of musical societies and bands, including the Music Association of Iranian Students 

(1998) and the National Iranian Students Orchestra (1999-2004). Since 1982, he has performed in Iran, USA, 

Canada, Syria, Jordan, Turkey, Greece, Italy, Hong Kong and the UK.  

Peyman has been composing and recording music for films, including a BBC TV4 project “Axis of Light” 

and an Aljazeera TV film “Lover Boys”. Peyman has been working in the field of music DSP since 1998. He 

holds BSc and MSc degrees in Electronic Engineering, from Shiraz University (1997) and Tarbiat Modarres 

University (2000) in Iran. And completed his MPhil on Signal processing at the Centre for Digital Music at 

Queen Mary, University of London (2008). Subsequently, he studied ethnomusicology at SOAS, University 

of London for a year (2010) and studied his PhD at London Metropolitan University (2016). 
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He is currently researching the possibilities of pushing the boundaries of the Persian music and santur 

performance; also developing algorithms for automatic recognition of the dastgàh / maqàm in audio musical 

signals. 
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ABSTRACT 
 
In this paper we try to obtain information regarding the musical 
thinking of Artem Erkomaishvili, one of the last master chanters 
of traditional Georgian chant. For this purpose, we analyse the 
recently determined F0-trajectories (Müller et al., 2017) for a 
set of chant recordings from 1966 in which Artem Erkomaish-
vili sang all three voices sequentially using two tape recorders 
in overdubbing mode. The purpose of our study is to determine 
the tuning of Artem Erkomaishvili’s voice and how it compares 
to the models proposed by various researchers to reflect (in their 
opinion) the historical Georgian tuning. The analysis of the me-
lodic pitch inventory shows that the sizes of melodic seconds 
sung by Artem Erkomaishvili vary over a range from approxi-
mately 140 to 240 cents, with a peak of the distribution at ap-
proximately 180 cents. We do not see evidence for any attempt 
to precisely use any particular or a small set of melodic interval 
sizes, as is suggested by some of the proposed tuning models. 
The harmonic analysis yields an interval  distribution which is 
peaking at justly tuned fifths and octaves at 698 and 1203 cents, 
respectively. No observational evidence for stretched octaves, 
as suggested by some models, is seen. Analysing the joint pitch 
distribution, we find evidence for considerable voice interaction 
in which Artem Erkomaishvili maintained harmonic intervals 
despite considerable pitch fluctuations of the individual voices. 
In short, Artem Erkomaishivli’s performance in 1966 seems to 
reflect a combination of strong harmonic and relaxed melodic 
thinking. 

1. INTRODUCTION 
Artem Erkomaishvili (1887-1967) is known today as a 
key representative of traditional Georgian singing of the 
20th century and one of the last grand masters of Geor-
gian chanting (sruligalobelni) (cf. Graham, 2015). In 
1966, one year before his death, he was asked to perform 
all voices of a series of chants to save them for posteriori-
ty. His performance, part of which was recently remas-
tered (Jgharkava, 2016), was recorded at the Tbilisi State 
Conservatory using two tape recorders, which were sub-
sequently operated in what is now called overdubbing. 
The recordings  were transcribed by Shugliashvili (2014). 
Although the use of the overdubbing setup originated 
from the lack of fellow chanters who could perform the 
repertoire, it turned into an advantage in view of an anal-
ysis of this data. Despite the fact hat polyphonic pitch 
analysis is still considered an enormous challenge in gen-
eral situations, the sequential overdubbing considerably 
simplifies the task of determining the fundamental fre-
quencies F0 (which for simplicity we will also refer to as 
pitches) for all voice segments. Details of the processing 
techniques can be found in Müller (2015). The corre-
sponding time-stamped F0-trajectories have been made 
publicly available1.  
 
In the present paper, which is a direct follow-up study to 
Müller et al. (2017), we want to find out what we can 

                                                             
1  https://www.audiolabs-erlangen.de/resources/MIR/2017-
GeorgianMusic-Erkomaishvili 

learn from this unique set of recordings (respectively 
analysis results) regarding the characteristics of the tun-
ing system(s) used by Artem Erkomaishvili. The topic of 
the authentic, historical Georgian tuning system has been 
a matter of intense and controversial discussion for a 
number of years, resulting in the proposition of several 
scale and/or tuning models which have little in common 
other than the untempered nature of the music (Erkvani-
dze, 2002; Gelzer, 2002; Westman, 2002;  Gogotishvili, 
2004 ; Kawai et al, 2010; Tsereteli and Veshapidze, 2014; 
Erkvanidze, 2016). Based on the analysis of recent field 
recordings in Svaneti/Georgia, Scherbaum (2016) took a 
conceptually different perspective on the issue of Geor-
gian tuning systems. Since he found considerable differ-
ences in the sequential (melodic) and the concomitant 
(harmonic) intervals used by traditional singers, he con-
cluded that a single scale/tuning model might not capture 
the complete tuning characteristics of Georgian vocal 
music. Instead, in line with Nikolsky (2015), he separate-
ly analysed the melodic and the harmonic pitch/interval 
inventory of the music. In the present study we go one 
step further and separately analyse the pitch organization 
in the recordings of Artem Erkomaishvili from a melodic, 
a harmonic and a voice interaction perspective.  
 
The main part of our study is devoted to the attempt to 
use the time-stamped F0-trajectories of the individual 
voices in Artem Erkomaishvili’s recordings to determine 
the associated melodic and harmonic pitch and interval 
inventories and to investigate how listening to pre-
recorded voices affected the tuning of Artem Erkomaish-
vili’s singing. The results are discussed  in the context of 
the predictions of the tuning models suggested by various 
researchers to reflect (in their opinion) the authentic, his-
torical Georgian tuning practice(s). Our results suggest 
that voice interaction effects, evidence for which can 
clearly be seen in the recordings of Artem Erkomaishvili, 
should be included in the discussions of the tuning sys-
tems of traditional Georgian (and possibly other) vocal 
music. This might require a shift of attention from the 
purely melodic to the combined melodic-harmonic as-
pects of the music. 
 
The paper is organized as follows. Following a brief re-
capitulation of the recording setup and the extraction of 
the F0-trajectories by Müller et al. (2017), we discuss the 
determination of the melodic aspects of the performance 
of Artem Erkomaishvili (Section 2.1). For the top voice 
segments we show that the individual F0-values, which 
make up the pitch tracks, exhibit a strong pitch clustering. 
We interpret the pitch values of the cluster centers (which 
we determine by k-means cluster analysis) to indicate the 
pitches of the notes of the mental melodic template Artem 
Erkomaishvili might have been using during his perfor-
mance. From the pitch values of the cluster centers for the 
complete dataset, we determine the set of possible single-
step melodic intervals for the complete performance. We 
compare (as a spot check) the properties of the resulting 
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distribution with the results of a note analysis for a single 
chant using the Tony software (Mauch et al., 2014, 
2015), and with the values of the single-step interval sizes 
from the predictions of some of the published tuning 
models for Georgian vocal music. Subsequently (Section 
2.3), we discuss the harmonic aspects of the tuning used 
by Artem Erkomaishvili. In this context, we make use of 
the time-stamps for the individual voice segments deter-
mined by Müller et al. (2017) to estimate the F0-values 
for the concomitantly sung (harmonic) intervals. These 
also show a strong clustering, the properties of which we 
interpret to reflect the mental harmonic template Artem 
Erkomaishvili might have been using during his perfor-
mance. As final aspect of our analysis, which according 
to our knowledge has previously been ignored in quanti-
tative investigations of tuning in Georgian vocal music, 
we investigate (in Section 2.4) the joint pitch distribution 
of voice combinations for signatures of voice interac-
tions. Considering a single chant, we find several instanc-
es in which Artem Erkomaishvili evidently maintained 
harmonic intervals despite considerable pitch fluctuations 
of the individual voices. Finally, in section 3, we con-
clude with a discussion of the main results of our study 
and their consequences for future work. 

2. PITCH AND INTERVAL ANALYSIS 
Figure 1 sketches the three-stage concept used during the 
recordings of Artem Erkomaishvili in 1966. In the first 
stage, only the lead (top) voice of a chant was recorded. 
In the second stage, Artem Erkomaishvili was singing the 
middle voice while listening to the recording of the lead 
voice. During the recording of the bass voice, he listened 
to the overdubbed recordings of the middle and top voice. 
The extraction of the F0-trajectories was also performed 
in a segmented way in that the extracted F0-trajectory for 
the first segment was used as constraint for the extraction 
of the F0-trajectory of the second segment, and so forth. 
For details of the analysis see Müller et al. (2017).  
 
To make this audio collection better accessible for musi-
cological research, one important task is to estimate the 
fundamental frequency (F0) trajectories of the sung 
pitches from the recordings using automated methods. 
While this is feasible with standard procedures in the case 
of monophonic music, the problem becomes much harder 
in the case of polyphonic music. In Müller et al. (2017), a 
graphical user interface (GUI) for semi-automatic estima-
tion of F0 trajectories was introduced. The GUI allows a 
user to specify temporal-spectral constraint regions that 
guide the estimation process. Furthermore, the GUI pro-
vides visual and acoustic feedback mechanisms that can 
be used to control and refine the estimated results in an 
interactive fashion. In Müller et al. (2017), we applied 
this GUI for extracting the F0 trajectories of the sung 
pitches from the three-voice chant recordings performed 
by Artem Erkomaishvili. To this end, we first determined 
the recordings’ structures based on the three-stage record-
ing setup (see Figure 1). Subsequently, we determined the 
F0-trajectories for the lead, middle, and bass voices from 
the first, second, and third section, respectively. To this 
end, suitable visualization and sonification functionalities 
helped us in determining suitable constraint regions to 
guide the estimation process. All results, including the 
original recordings, figures of the visual representations, 
the estimated F0-trajectories, and the sonifications of the-

se trajectories, have been made publicly available.1 These 
results serve as an important basis for our subsequent 
analysis. 
 

 
Figure 1. Sketch of the three-stage recording setup (top 
panel), the recorded waveforms (middle panel), and the 
F0-trajectories derived for the individual voices of chant 
no. 2 (Shugliashvili, 2014). The pink rectangles indicate 
the structure of the three-stage recording process. 

2.1 Melodic Analysis 
In the first step of our analysis, we determined the me-
lodic pitch inventories of the lead (top) voice segments. 
These were always sung first and individually. We as-
sume that, in case Artem Erkomaishvili believed that a 
particular chant should be performed  in a specific scale, 
this will show up as a clustering of pitches around the 
intended “scale pitches” for this voice segment. This can 
be seen in  Figure 2 for the chant Aghdgomasa Shensa 
(referred to by its chant ID no. 2 in Shugliashvili, 2014). 

 
Figure 2. Pitch histogram (vertical axis scaled to match 
the sample PDF) and smooth kernel distribution (red 
solid line) of the F0-values  in the top voice of chant no. 
2. Note the clustering of the pitch samples. The refer-
ence note for all absolute cent calculations is A1 (55 
Hz). 

In order to determine what we assume to be the intended 
scale pitches quantitatively, we performed a formal clus-
ter analysis (using the k-means algorithm) to determine 
the locations of the centers of the F0-clusters and the cor-
responding spreads. Figure 3 shows the resulting separa-

                                                             
1  https://www.audiolabs-erlangen.de/resources/MIR/2017-
GeorgianMusic-Erkomaishvili 
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tion of the pitch set of the top voice of chant no. 2 into 11 
pitch clusters.  

 
Figure 3. Pitch cluster histograms  of the F0-values in 
the top voice of chant no. 2.  The number on top of each 
cluster shows the cluster mean and the corresponding 
cluster standard deviation (in cents). The vertical axis is 
proportional to pitch sample PDF. The labelling of the 
vertical axis, which is unimportant in the present con-
text, was omitted on purpose on this and similar plots to 
increase the plot size. 

What can be seen in Figure 3 is that the F0-values seem 
to cluster in such a way that an octave (here e. g. the in-
terval between the cluster at 2412 and the cluster at 1209 
cents, which spans 1197 cents) is divided into seven in-
tervals of different sizes. This seems to support the inter-
pretation of the clusters as marking the “scale pitches” of 
the mental tuning template which Artem Erkomaishvili 
was using during his performance of the chant. Figure 4 
shows the melodic line of the top voice of chant no. 2 as a 
trajectory through the different pitch clusters.   

 
Figure 4. Pitch track of the top voice of chant no. 2, 
color coded according to cluster membership. 

At first glance, one might believe that the spread of the 
clusters, as indicated by the sample standard deviations in 
Figure 3,  but also the jitter of the pitch track in Figure 4, 
are rather large since they  reach values of one quarter to 
one half of a semi-tone (25 – 50 cents). However, this is 
not surprising and must not be seen as a sign of poor 
pitch control of the singer. For once it is to be expected as 
an expression of the categorical perception of pitch (e. g. 
Siegel & Siegel, 1977; Sundberg, 1994). In addition,  
sliding phases in the beginning of new syllables, breath-
ing, vibrato and consonants all affect the temporal stabil-
ity of the F0-trajectories. In order to test to what degree 
these effects, but also the pitch algorithm itself, might af-
fect the determination of the “scale pitches”, we per-
formed an alternative pitch determination using the Tony 

software (Mauch et al., 2014, 2015). In this context, we 
visually edited the pitch tracks to remove all what could 
be considered artifacts of sliding phases in the beginning 
of new syllables, breathing, vibrato, and consonants. Sub-
sequently, pitch tracks as well as notes, yet another  way 
to determine the pitches for this example, were calculat-
ed. The resulting histogram is shown in Figure 5.  
 

 
Figure 5. Histogram of note pitches, determined with 
the Tony software (Mauch et al., 2014, 2015) for the top 
voice of chant no. 2. The red dotted lines mark the loca-
tions of the pitch cluster centers displayed in Figure 1 as 
determined from the F0-trajectories. 

Figure 5 shows that the pitch-cluster mean values deter-
mined from the raw F0-trajectories are a reasonable rep-
resentation of the histogram distribution of the notes, as 
determined after visual editing of the pitch tracks. As fi-
nal test of the robustness of the pitch-cluster centers, we 
performed a k-mean cluster analysis on the individual 
pre-edited pitch values as determined by the Tony soft-
ware (based on the PYIN algorithm). The resulting pitch 
histograms are shown in Figure 6. 
 

 
Figure 6. Pitch cluster histograms  of the pitch samples 
in the top voice of chant no. 2 as determined with the 
PYIN algorithm in the Tony Software (Mauch et al., 
2014, 2015. The number on top of each cluster shows 
the cluster mean and the corresponding cluster standard 
deviation (in cents). 

Overall, comparing the F0-distributions in Fig. 3 and Fig. 
6, the set of F0-cluster means in Fig. 3 is shifted by ap-
proximately 20 cents towards lower values with respect 
to the set of cluster means calculated from the pitch sam-
ples determined with the Tony software in Fig. 6. This 
shift might be due to the preprocessing of the pitch trajec-
tories and the removal of presumed artifacts, e. g. glis-
sandi at the beginning of new syllables which tend to start 
from sometimes rather low pitch values (cf. Figure 4). If 

Proceedings of the 7th International Workshop on Folk Music Analysis, 14-16 June 2017, Málaga (SPAIN) 
ISBN: 978-84-697-2303-6

31



  
 

one would remove this constant shift, eight of the ten cor-
responding peaks in the  two sets of cluster centers would 
be less than 10 cent apart, one 15 cent,  and one (the 
smallest cluster in Figure 6 between 1700 and 1800 cents) 
33 cent. Based on this result, we might assume that the 
vast majority of interval sizes, calculated as differences 
between the cluster centers of neighboring pitch clusters, 
carry an average uncertainty of less than 10-15  cent.  
 
From the analysis of all chants for which the pitch range 
of the top voice covers more than an octave (58 out of 
101), we obtain 467 intervals between neighboring clus-
ter centers. Their histogram distribution is shown in Fig-
ure 7.  

 
Figure 7. Distribution of possible single-step melodic 
interval sizes, determined from the top voices of all 58 
chants  for which for which the pitch range covers more 
than an octave. The red line  corresponds to the 5-point 
smooth kernel distribution calculated from the histo-
gram data. 

No particular preference is seen for any of the interval 
sizes characterizing  seconds in the scale models by 
Erkvanidze (2002, 2016), by Tsereteli and Veshapidze 
(2014), or in  the tempered diatonic model, respectively. 
Erkvanidze (2002) suggests that the authentic Georgian 
tuning system uses interval sizes for single melodic steps 
that can take values of either 154, 172, or 204 cents.  One 
can see that none of these interval sizes is incompatible 
with Figure 6, but so are many other intervals between 
140 and 220 cents.  Tsereteli and Veshapidze (2014) on 
the other hand suggest a seven-interval scale of equal in-
terval size of 1200/7 = 172 cents. This value, which is 
also one of the interval sizes in the Erkvanidze model, is 
actually very close to the peak value of the distribution 
(176 cents), but there is no visual evidence that Artem 
Erkvanidze has intentionally tried to achieve this with 
any precision. Finally, western tempered diatonic scales 
assume single melodic step sizes of either 100 (semi-
tone) or 200 cents, the first of which is completely absent 
in Figure 7.   
 
One has to note, however, that Figure 7 does not show 
the frequency distribution of single melodic steps of notes 
which were actually sung in a particular chant. It provides 
an overall view of  the possible melodic single-step sizes 
for the whole corpus. In order to perform a simple test of 
how different these may be, we used the Tony software 
(Mauch et al., 2014, 2015) to determine the sung notes 
(instead of the pitch track centers) in chant no. 2 and to 
calculate the melodic intervals based on them. The results 
are shown in Figures 8 and 9. 

 
Figure 8. Notes (red blobs plotted at the note pitches in 
the upper part of the figure, superimposed by the pitch 
track segments in green) and melodic step sizes (vertical 
lines in the lower part of the figure). The melodic steps 
are color coded according to their direction (up- blue, 
down- red). 

In Figure  9a) the distributions of the melodic step sizes is 
shown independent of direction while in Figure 9b) and 
c) the distributions are split up according to upwards (b) 
and downwards (c) movements. As a note on the side, we 
want to mention that the upwards steps taken by Artem 
Erkomaishvili in this example seem to be little larger on 
average than the downward steps. In field observations of 
traditional village singers in Upper Svaneti (Scherbaum, 
2016) this was observed as a systematic feature, which 
might  point to a more general performance element of 
Georgian vocal music which deserves further study. 
 
It can be seen in Figure 9a) that the central body of the 
step size distribution for single melodic steps in this ex-
ample covers a similar range of approximately 140 - 220 
cent than the distribution for all possible step sizes shown 
in Figure 7. In other words, even in a single chant, the 
variability of melodic seconds is not found to be reduced. 
 

 
Figure 9. Intervals between notes in the top voice of 
chant no. 2 (vertical lines) and corresponding histo-
gram. Fig. 9a) shows all steps sizes independent of di-
rection, while these are split up according to positive (b) 
and negative (c) in the two lower panels. 
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Figure 7 to 9 suggest that the mental tuning templates Ar-
tem Erkomaishvili might have been using during the per-
formance of the chants do not seem to be very rigid re-
garding the single-step melodic interval sizes, which can 
also be referred to as “melodic seconds”. For the whole 
set of 58 chants analysed, the values range approximately 
between 140 and 240 cent, which corresponds to  a semi-
tone  in the 12-tone equal tempered scale. There is no 
visual evidence for any intention to precisely sing any 
particular melodic scale. 
 
Several questions arise in this context. Does the lack of 
evidence for precision of the melodic seconds  tell us 
anything regarding the validity of  any of the scale mod-
els proposed for Georgian music? Is it unintentional or 
intentional, in other words does it characterize uncertain-
ties or is it actually an important feature of the music and 
serves a particular purpose? Before we get back to these 
questions in the discussion section, we are going to look 
at the other voices and their interaction with each other.   
 
2.2 Harmonic Analysis 
 
To analyze the harmonic tonal organization in the record-
ings, we realigned the individual voice segments to a 
common start time. The start and end times for the indi-
vidual segments were obtained manually and are public-
cly available at the website1 accompanying Müller et al. 
(2017). First, we aligned all voice segments to a common 
zero start time. Subsequently, we selected only those F0-
samples for which all three voices are active (with valid 
F0-values). For  chant no. 2 this results in the F0-
trajectories shown in Figure 10. 
 

 
Figure 10. F0 trajectories for the aligned voices of 
chant no. 2. The top, middle and bass voices are plotted 
in red, blue, and green, respectively.  

 
Subsequently, we determined the F0-values for all the  
concomitant pitches from which we calculated the har-
monic intervals. These were again subjected to a cluster 
analysis to quantitatively determine the harmonic struc-
ture of the chant (Figure 11).  
 

                                                             
1  https://www.audiolabs-erlangen.de/resources/MIR/2017-
GeorgianMusic-Erkomaishvili 

 
Figure 11. Distribution of concomitant (harmonic) in-
tervals in  chant no. 2 and derived clusters thereof. The 
numbers indicate the cluster means and standard devia-
tions.  

One can see in Figure 11 that the most prominent har-
monic pitch cluster centers occur around 38 cents, 702 
cents (a perfectly justly tuned fifth) and at 1203 cents (a 
perfectly tuned octave).  The harmonic thirds are close to 
neutral with a cluster center at 351 cents, while the 
fourths at 516 cents appears sharper than a justly tuned 
fourth (which would be at 498 cents).  Performing the 
same kind of analysis to all 44394 harmonic intervals in 
the analysed corpus results in the distribution shown in 
Figure 12. The general picture remains very similar to 
Figure 11, except that the harmonic seconds get closer to 
the tempered value of 200 cents, moving farther away 
from the distribution of the melodic intervals (cf. Figure 
7). Overall, the fifth is the most frequent harmonic inter-
val occuring in the complete corpus.  
 

 
Figure 12. Distribution of all 44394  concomitant (har-
monic) intervals in  all 58 chants of the corpus for 
which the top voice covers a range of more than one oc-
tave, separated into pitch clusters.  The numbers indi-
cate the cluster means and standard deviations.  

 

2.3 Voice Interaction 
 
When Artem Erkomaishvili was singing the middle 
voice, he was listening to the top voice played back to 
him from one of the tape recorders. Similarly, he would 
listen to the recording of the overdubbed top and middle 
voices when singing the bass. Can one tell from the F0-
trajectories, if hearing another voices affects his singing? 
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If we look at the individual F0-distributions for the dif-
ferent voices shown in Fig. 13, all one can see is that the 
pitch clusters seem to be pretty much in phase with a sim-
ilar spread. 
 

 
Figure 13. Smooth kernel distributions of the F0 values 
for the top voice (red), middle voice (blue), and bass 
voice (green) for chant no. 2.   

One way to identify possible voice interactions is by 
studying the joint distributions of concomitant pitches. 
These are shown in Figs. 14 to 16 for the middle-top 
voice, the bass-middle voice, and the bass-top voice 
pairs, respectively.  Each dot represents a pair of simulta-
neously sung pitches. Jointly sung notes will appear in 
this plot as a two-dimensional cluster of dots. The x- and 
y- coordinates of a note cluster should be close to one of 
the cluster centers for the individual voices shown in Fig. 
13. For example the x- coordinates of any of the clusters 
in Figure  14 (middle against top voice) should be close 
to one of the peaks of the middle voice (blue curve) in 
Figure 13, while the corresponding y-coordinates should 
be close to one of the peaks of the red curve representing 
the top voice pitches. The reason for this is simply that 
mathematically speaking  the blue and red distributions in 
Figure 13  are the marginal distributions to the joint dis-
tribution of pitch pairs shown in Figure 14. The tilted 
lines in Figure 14 correspond to different harmonic inter-
vals between the top and the middle voice. The solid 
black line indicates unisone. So if the two voices are in 
perfect unisone, the corresponding pitch dot would plot 
exactly on the solid black line. If the top voice would be 
exactly 200, 350, 500, or 700 cents above the middle 
voice, the corresponding pitch dot would plot on the 
dashed orange, the dashed green, the dashed blue or the 
solid red line, respectively.  
 

 
Figure 14. Concomitant middle-top voice pitch pair 
sample distribution of chant no. 2. 

It is the shape of the two-dimensional clusters which tells 
us if the pitch of the middle voice is influenced  by the 
pitch of the top voice heard. Lets assume, for example, 
that the top voice sings a note in which the mean pitch is 
at 1300 cents and fluctuates within a range of ± 20  cents. 
If the middle voice wants to sing the same note it will al-
so produce a range of pitch values fluctuating by some 
amount, lets say also ± 20 cents. If the two fluctuations 
will be complelety independent of each other,  say Gauss-
ian,  the two-dimensional distribution of pitch pairs will 
be a two-dimensional Gaussian distribution which would 
be visible as a distribution around the center point which 
looks similar in all direction (circular). If, on  the other 
hand, the middle voice would be absolutely stable (no 
fluctuation at all), one would see a vertical alignment of 
the two dimensional pitch cluster for that note. If the top 
voice is stable, but the middle voice fluctuates, then the 
alignment of the cluster should be horizontal. If, however, 
the top voice fluctuates by some amount and the middle 
voice wants to maintain  a particular harmonic interval, it 
must sing in such a way that the middle voice will fluctu-
ate in phase with the top voice by exactly the same 
amount. In such a case, the note cluster would show an 
alignment of exactly 45 degrees.  In Fig. 14 we can iden-
tify several of these structures labeled by numbers.  Note 
cluster 1 in Figure 14, for example, represents a situation 
in which top and middle voice maintain unisone despite 
the fact that the voices fluctuate by a considerable amount 
(by roughly 100 cents). Note clusters 2 and 3 represent 
situations in which the middle voice sings a stable 5th be-
low the top voice while both voices fluctuate by approx-
imately 100 cents. Note cluster 4 and 5 indicate similar 
situations for a harmonic neutral third and a harmonic 
major second, respectively.  
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Figure 15. Concomitant bass-middle voice pitch pair 
sample distribution of chant no. 2. 

In the bass-middle voice pitch distribution shown in Fig-
ure 15, one can identify more note clusters which are ei-
ther vertically or horizontally aligned, meaning that there 
was no or little voice tuning of the bass voice. There is 
one structure (labeled 6), however, in which a harmonic 
fourth is attempted to be maintained. 
 

 
Figure 16.  Concomitant bass-top voice pitch pair sam-
ple distribution of chant no.  2.  

Finally in the bass-top voice distribution, one can see  at 
least two note clusters in which the bass voice tried to 
maintain an octave to the top voice. Overall, it looks like 
Artem Erkomaishvili, when singing the bass voice, was 
switching his attention between the middle and the top 
voice. When singing the middle voice, on the other hand, 
he only heard the top voice, so this was his only audible 
reference which he could relate to. This may explain why 
Figure 14 shows more note clusters with evidence for 
voice interactions than Figs. 15 and 16.  

3. DISCUSSION AND CONCLUSIONS 
With the present study we want to make a contribution to 
a  better understanding of  the musical thinking of Artem 
Erkomaishvili, one of the last master chanters of tradi-
tional Georgian chants. Based on a unique set of record-
ings which was obtained at the Tbilisi State Conservato-
ry in 1966 and for which the F0-trajectories were deter-
mined in a prior study by Müller et al. (2017), we inves-
tigated the pitch inventories of all three voices of 58 
chants separately and jointly. In addition we took a first 
step at investigating  possible signatures of voice interac-
tions between different voices, making use of the special 
recording setup. In this context it needs to be mentioned,  
however, that the use of the overdubbing technique, alt-
hough initiated by Artem Erkomaishvili himself, was 
new to him (pers. communication  by Anzor Erkomaish-
vili, grandson of Artem Erkomaishvili, 2017). We do not 
know if this has been influencing the recordings in any 
way. In any case, there is still much more to be done in 
the context of trying to understand the influence of  voic-
es on each other, in particular on  the structural and tem-
poral context in which this happens (cf. Graham, 2013), 
but this is the objective of a separate study.  

Our main results of the analysis of the melodic pitch in-
ventory show that the sizes of melodic seconds vary over 
a large range from approximately 140 to 240 cents with a 
peak of the distribution at approximately 180 cents. We 
do not see a preference for any of the interval sizes char-
acterizing seconds in the scale models by Erkvanidze 
(2002, 2016), by Tsereteli and Veshapidze (2014), or in  
the tempered diatonic model, respectively. Loosely 
speaking, one could characterize the 1966 performance 
of Artem Erkomaishvili as relaxed regarding the pre-
cisons of single melodic steps. In contrast, we observe a 
high precision when it comes to the harmonic structure 
of the performance. The harmonic analysis yields a dis-
tribution in which precisely justly tuned fifths at 698 
cents and octaves at 1203 cents appear as the most fre-
quently intervals. The key to this “melodic flexibility” 
and “harmonic precision” may lie in the interaction of 
the voices for which we see clear evidence in the results 
of the analysis of the joint pitch distributions.  There are 
several cases in which Artem Erkomaishvili maintained 
particular harmonic intervals despite considerable pitch 
fluctuations of the individual voices. Therefore, main-
taining harmonic precision seems to go hand in hand 
with the relaxation of melodic precision, which in turn   
allows for rapid retuning of  the voice to maintain an in-
tended harmonic interval. 

Relaxing the aim for melodic precision while at the same 
time aiming at harmonic precision may also relate to the 
way chants were documented in the past using neumes, 
which by principle do not allow to document a melody at 
a very high precision. As discussed in detail in the dis-
sertation of John A. Graham (Graham, 2015), Artem 
Erkomaishvili used his own neume system, but only for 
the documentation of the top voice. He is quoted of hav-
ing told his grandson Anzor Erkomaishvili that “the oth-
er voice parts would remember their parts by ear, follow-
ing the first voice`s lead” (from Graham, 2015). Natural-
ly,  if the middle and bass voice are developed by ear 
from the lead voice,  harmonic precision is an asset. 
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In conclusion, Artem Erkomaishvili’s performance in 
1966 seems to be characterized by a combination of 
harmonic and melodic thinking rather than by the single 
aim for melodic precision.  

If this interpretation is correct and if it is valid for tradi-
tional Georgian vocal music in general, it would raise the 
fundamental question whether the concept of a single 
scale (whatever its parameters are) is appropriate to de-
scribe the characteristics of Georgian vocal  music. Our 
results are at odds with any melodic scale model which 
requires a very high precision in singing the melodic in-
tervals. Since  the melodic and the harmonic structure of  
vocal music does not have to be identical, it seems more 
appropriate to consider the tonal organization of vocal 
music as an at least two-dimensional property connecting 
melodic and harmonic aspects. A very stimulating in-
depth discussion of this topic, in particular on the proper-
ties of melodic and harmonic seconds, can be found in 
the paper by Nikolsky (2015).   

In a recent paper, Erkvanidze (2016) emphasizes the im-
portance of studying the properties of the old audio re-
cordings of professional master chanters as a means to 
understand the old Georgians musical system. In his the-
sis, John Graham writes “any theory must account for 
both the tuning system heard in the 1966 Erkomaishvili 
recordings and evidence from earlier singers and other 
regional chant systems seen in the transcription record.” 
(Graham, 2015). We fully agree with both statements 
and want to emphasize that in this paper we do not pro-
pose any new tuning model. The main aim of the present 
study is to analyse those acoustical characteristics of the 
1966 Erkomaishvili recordings which seem relevant as 
boundary conditions for model building and provide 
them for discussion.  

Since science usually benefits most from a healthy com-
petition of different ideas and perspectives, we also in-
vite other researchers to test their models (or develop 
new ones) using the F0-trajectories of the Erkomaishvili 
recordings, which for this purpose have been made pub-
licly available1.  
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ABSTRACT 
 

This article’s main aim is to outline the intervals between the 

pitch of the sounds that compose the modal structure that is the 

most commonly used by the Gnawa of Morocco. Every Moroc-

can brotherhood has its music, and the intrinsic details of those 

traditions are inextricably tied to the history of each of them. To 

analyze the details of the musical structures and techniques used 

in the brotherhood’s rites contributes to the comprehension of 

their present and could give insights on their past. 

We will discuss the interval structure of the modal scale 

through the techniques that the Mâallem implements when play-

ing the guembrì and through the analysis of the audio recordings, 

with a particular focus on the melodic lines of the singers. 

The results obtained could contribute to the confirmation of 

the historical and contemporary distinctiveness of the Gnawa 

from the other Moroccan brotherhoods. The data collected in the 

analysis could also make way for a discussion about the transfor-

mations and the unbalanced negotiation occurred in the process 

of commercialization of the Gnawa music across the global mar-

ket. 

1. INTRODUCTION 

In Morocco there are a number of sufi brotherhoods 

(ṭarīqa), whose ritual activities are strongly intertwined in 

the daily life of the inhabitants. The brotherhoods differ-

entiate themselves from one another on the base of cere-

monial elements, dress codes, territorial localization, sanc-

tuaries (zaouïa), and musical practices. In fact, the Gnawa 

brotherhood tends to be significantly more distinct than 

others, especially in regard to music. 

The historical reasons of this diversity have been in-

vestigated, and recent research (including oral narratives) 

show that it could be related to the ethnic and social prov-

enance of the original nucleus of founders of the brother-

hood. Many scholars1 have found evidence supporting that 

the Gnawa tradition emerged from the constitution of a 

Moroccan-styled brotherhood at the hand of the black ex-

slaves deported to Morocco from the Western and Central 

                                                           
1 For more informations on the history, the rituals and the culture of the 

Gnawa, and for more details on the variety of provenances of the found-

ers of the brotherhood, see Becker (2011), Bentahar (2010), Chlyeh 
(1998), El Hamel (2013), Pâques (1991), Shaefer (2015), Sum (2011, 

2013), and Turchetti (2015). 
2 Even if the recent political activity in Morocco is going in the direction 
of properly confronting racism and discrimination in the country, the sit-

uation is still dire. For more information on the subject, I suggest to visit 

African countries. The history of the Gnawa brotherhood 

is that of the institutionalization of the presence of those 

minorities in the fabric of Moroccan society through the 

construction of a religious structure that is the result of a 

long and complex negotiation with local practices. The 

specificities of the music by the Gnawa brotherhood offer 

a perspective as to how their history of slavery has become 

incorporated and reclaimed into their identity, marking 

them from other ṭarīqa that do not share the same past. 

Their music represents resistance and expression of cul-

tural affirmation against historical and contemporary rac-

ism that they have faced and are facing.2 It talks about their 

resistance to historical adverse situations where their cul-

ture risked to be erased, but survived to reaffirm itself in 

the construction of the brotherhood. Today the Gnawa 

brotherhood is seen as one of the most important of Mo-

rocco, to the extent of being an example for other brother-

hoods of Moroccans.3 They were able to build up a com-

mon cultural heritage that celebrates their empowerment 

and survival. 

For these reasons, a proper study of the specific ele-

ments that compose the Gnawa culture adds knowledge 

not only to the description of the contemporary situation, 

but also to the understanding of the historical process that 

led to the cultural and social relations that we see today. 

2. CONTEXT OF RESEARCH 

The Gnawa music tradition distinguishes itself, apart from 

the characteristic use of specific instruments and rhythms, 

also through the use of particular modal scales whose in-

terval structure is substantially extraneous to the Moroccan 

context.  

The discussion presented in this article is mainly based 

on the data and materials that I collected during two re-

search trips for a total of five months in 2016 and 2017 to 

Essaouira, Marrakech, Casablanca and Rabat.4 The princi-

the GADEM website, and De Haas (2014), El Hamel (2002, 2013), 

Marouan (2016), and Timéra (2011). Additional information on the sub-

ject can also be found in the articles cited in the previous footnote. 
3 See El Hamel (2008: 249 et seq.). 
4 The research trip was coordinated by Prof. Staiti of the University of 

Bologna as part of the European project D.R.U.M. I also owe to prof. 
Staiti the merit of having chosen the theme of the research and outlined 

Proceedings of the 7th International Workshop on Folk Music Analysis, 14-16 June 2017, Málaga (SPAIN) 
ISBN: 978-84-697-2303-6

37



  

 

pal informers that I worked with have been Khalid Amen-

houce (47 years old, Mâallem based in Essaouira, appren-

tice of the recently deceased Mahmoud Guinia), Yassine 

Boubker (21 years old, he plays professionally the guembrì 

since the age of 16), Azouz Soudani (57 years old, af-

firmed professional player with a long experience), and 

Mahmoud (55 years old, guembrì constructor based in Es-

saouira’s medina). To verify the data collected against a 

broader documentation sample, I also analyzed a vast 

number of recordings of Gnawa performances that I 

bought directly in Morocco5 or found on the internet.6 

3. INSTRUMENTS, TECHNIQUES, DATA 

The guembrì is a lute with three strings, called dir, tehtia 

and westia.7 The dir is the lowest string in terms of pitch: 

tehtia and westia are tuned respectively a fourth and an oc-

tave higher. The westia is shorter than the other two, stands 

in the middle of them, and is attached to the bridge right 

next to the third finger position on the tehtia. The main 

modal structure used in Gnawa music (although not the 

only one) requires the musician to obtain at least seven 

notes from the instrument: dir, tehtia and westia open 

string, plus one finger position on the dir and three on the 

tehtia. I measured the length of the strings on all the instru-

ments used by the musicians I talked with, and asked them 

to show me the finger positions that they reach for on the 

strings to obtain the notes, then measured that distance 

from the bridge. To cope with eventual differences be-

tween the base length of the strings (as the instruments are 

handmade the strings could differ in length even a few cen-

timeters) I calculated the mean values of the strings base 

lengths, then modified the data of the finger position ac-

cordingly through a simple proportion. In the end I calcu-

lated again the mean values of those positions between the 

different musicians. I was not particularly surprised to find 

that the four professional musicians I interviewed showed 

me exactly the same proportions between the finger posi-

tions. In the Tables n. 1 and 2 I show the mean values of 

the length of the vibrating part of the string for each note. 

I calculated the distance expressed in cent between dir, 

tehtia and westia verifying the tuning of the strings, 

whereas I calculated the distance in cent of the note ob-

tained with each finger position on a string from the fun-

damental frequency of the open string itself through the 

formula: 

f =
1

2l
√

T

μ
    (1) 

Where f is the frequency of the sound produced, l the 

length of the vibrating part of the string, T is the tension 

and μ is a constant tied to the material that composes the 

string. As the last two can be considered constant on the 

same string, by calling k the result of the root of their ratio 

we could describe the frequency of a note coming from a 

given finger position (or of the open string itself) as 

f1 =
1

2l1
k   and   f2 =

1

2l2
k  (2) 

Then we can recur to this formula to calculate the dis-

tance in cents between two frequencies: 

Dist = 1200log2 (
f2

f1
)    (3) 

By substituting the two formulas for f2 and f1 from the 

(2) in the (3), and making the appropriate simplifications, 

we obtain the final formula that I used: 

Dist = 1200log2 (
l1

l2
)   (4) 

 

 

Position Length [cm] Absolute error L 
[cm] 

Interval from modal 
center [cent] 

Absolute error on 
the interval [cent] 

Interval 

Dir open string 83 0,5 0 0 Tonal center 

Dir first position 75,5 0,5 163,9 2,1 Raised neutral second 

Tehtia open string 83 0,5 500 0 Perfect fourth 

Tehtia first position 74 0,5 698,7 2,5 Perfect fifth 

Tehtia second position 65 0,5 923,2 5,8 Raised major sixth 

Tehtia third position 62 0,5 1005,0 7,1 Minor seventh 

Westia open string 62 0,5 1200 0 Perfect eight 

 

Table 1. Length of vibrating part of strings on the guembrì 

 

                                                           
the hypothesis of which this brief relation is meant to be both a develop-

ment and a test. Although in this article I will generalize by referring the 

modal structure to the broader Moroccan Gnawa heritage, it is important 

to remember that there are conspicuous regional variations and that the 
cultural heritage described here is more commonly found in the north-

western area of the country. 
5 Many musicians promote themselves through selling homemade re-
cordings on cds or directly by handing out mp3 files through pen drives. 

6 Similarly to the homemade production of cds and mp3, musicians use 

the most common internet service providers (namely Youtube and Face-

book) to demonstrate their capabilities and promote their music. 
7 Sum (2012: 128) calls them zir, tahtiya and ndui, saying that those word 
mean “fater”, “mother” and “child” respectively. My findings differ from 

the author’s: see the appendix for more information. 
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Another opportunity to verify the results shown in Ta-

ble 1 came from the analysis of the finger positions used 

by guembrì players on another model of instrument called 

hajhuj. This one is constructed in the same way than the 

guembrì, but is only used in particular ritual contexts.8 It is 

also a bit smaller, and has a different system of connection 

of the strings to the top of the bridge. Normally dir and 

tehtia have different lengths, but on the guembrì the dif-

ference in length is annulled by the fact that the lace block-

ing the second also holds down the first, making the two 

open string lengths just equal. This does not happen in the 

smaller hajhuj, where the strings are normally directly en-

twined in locking mechanisms. That leaves the lengths of 

the open strings unmodified by laces, thus making them 

differ. In Table 2 we can see that, even with this difference, 

and keeping into account the absolute error tied to the de-

rived measure in cents, the musicians accommodate for the 

difference by varying the finger positions accordingly, ob-

taining positions that still reproduce the same intervals 

seen in Table 1. 

 

Position Length [cm] Absolute error on L 
[cm] 

Interval from the 
modal centre [cent] 

Absolute error on the 
interval [cent] 

Interval 

Dir open string 76 0,5 0 0 Modal centre 

Dir first position 69 0,5 167,3 2,3 Raised neutral second 

Tehtia open string 74 0,5 500 0 Perfect fourth 

Tehtia first position 66 0,5 698,0 2,8 Perfect fifth 

Tehtia second position 58 0,5 921,8 6,5 Raised major sixth 

Tehtia third position 55,5 0,5 998,0 7,9 Minor seventh 

Westia open string 52 0,5 1200 0 Perfect eigth 

 

Table 2.  Length of vibrating part of strings on the hajhuj 

 

4. VOICE SPECTROGRAMS 

We can also confirm the intervals identified studying the 

techniques of use of the guembrì and hajhuj through an-

other way: by the relations between the frequencies 

reached by the singers, evaluated from the spectrograms of 

the recordings.9 For an easier reading of the Figures, I 

slightly modified the image output by adding a horizontal 

grid10 and by highlighting in green the traces of the me-

lodic movement, carefully confronting aural and visual in-

formation. 

In Figure 1 we see the spectrogram of a melodic pas-

sage from a recording of Šalaba, one of the songs where 

the modal scale discussed here is used.11 In the Figure we 

see the passage from the first hemistich of a verse, con-

cluding in the center after the long note, to the second hem-

istich. The grid added on top of the image signals the sem-

itones of a tempered scale, and the red lines show the 

modal center and the perfect fourth, fifth and octave. We 

can observe the singer going for a precise intonation of the 

perfect octave, minor seventh, perfect fifth and fourth, but 

also the particular tuning of the second from the modal 

                                                           
8 More research should be done on the subject, as the use of the hajhuj is 
more elusive, but it seems that it is only used in rites focused around fe-

male jinns. I thank Silvia Bruni for the information on the subject. 
9 I obtained the spectrograms from Sonic Visualiser, a software produced 
by the Queen Mary University of London: for more information, see Can-

nam (2010). 
10 The software produces png images without the grid, so with the help of 
Alberto Malagoli, an engineer from the University of Modena, I created 

center, in the lower right corner, as a slightly raised neutral 

second. Note the slight upward movement of the voice, 

that points even more in the direction of the raised neutral 

tuning. In this module we cannot directly see the sixth 

from the modal center, but we have a visibly raised major 

ninth in the first arch. The fact that a raised major ninth 

and a raised neutral second share the same space is under-

standable if we keep in mind that those songs tend to have 

a movable modal center that the singer relocates in relation 

to the flow of the verses and hemistiches. In this case, we 

could interpret the first (left) part of the verse as having a 

modal center positioned at a perfect fourth from the final 

note of the module. In other words, the modal center of the 

first hemistich is on the note of the open tehtia string, while 

the modal center of the second one is on the open dir string, 

which makes even more sense as it relates the discourse to 

local instrumental practice. Considering the pitch of the 

tehtia as the temporary modal center of the first part of the 

verse, then the pitch of the note achieved in the first arch 

is exactly at an interval of raised major sixth from it. 

Therefore, Figure 1 confirms the description of the interval 

structure of the modal scale given on the base of the prin-

a simple html-based program that adds a modifiable grid on top of the 

png file. The program can be found on the website http://alpert.al-

tervista.org/LorenzosTesi/ 
11 See appendix for more information on the song. I chose this one be-
cause in its first part it is accompanied only by a sparse rhythmical clap-

ping of hands: the lack of qraqab makes the spectrogram clearer. 
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cipal finger positions on the guembrì, previously de-

scribed, but it also suggests interesting details about the 

relation between the coordination of moving modal cen-

ters, the lyrics content and structure, and the instrumental 

techniques. 

In Figures 2 and 3, instead, we can see the same module 

of the same song interpreted by Mâallem Hamid el Kasri, 

in one of his recordings12 for the circuit of the world music 

production. In this recording, other than the traditional in-

struments, a keyboard tuned on the tempered scale com-

plements the accompaniment. As we can clearly see, the 

singer adapted the pitch of the notes to the tempered scale 

suggested by the keyboard, thus flattening the specificities 

of the Gnawa modal scale. In particular, he adapted the 

interval of a raised neutral second from the final note to a 

major second (Figure 2, lower right corner). The interval 

of a raised major ninth (Figure 3, upper left corner) has 

been accommodated in the same way, resulting in a modal 

structure of the piece flattened to that of a dorian mode. 

 

 

Figure 1. Spectrogram of the melodic movement of the 

voice in one of the Šalaba modules, recording by Mâallem 

Khalid Amenhouce 

 

 

Figure 2. Spectrogram of the melodic movement of the 

voice in one of the Šalaba modules, recording by Mâallem 

Hamid el Kasri 

 

                                                           
12 The recording is the seventh track contained in the cd Hamid el Kasri 

& Issam-Issam, Saha Koyo: Jazz Gnawa, published by the Societè Artis-
tique Et Culturelle Audio Visuelle, SACAV S 127 (2006) 

 

Figure 3. Spectrogram of the melodic movement of the 

voice in one of the Šalaba modules, recording by Mâallem 

Hamid el Kasri 

5. MODAL STRUCTURES 

From what we’ve gathered, Gnawa music in traditional 

contexts is mainly based on a modal structure only par-

tially equivalent to a dorian mode without the third degree, 

where the second and sixth degree are toned in a complex 

way that is not in line with that built on a tempered scale. 

The only researcher who described this modal structure 

and its variations is Maisie Sum, who published the results 

of her analysis in two articles (2011: 88; 2013: 157) that 

partially resume the informations more thoroughly ex-

plained in her doctoral dissertation (2012: 128-136). 

Sum’s articles do not delve into the discussion of the 

intervals as they are limited to a general description of the 

pentatonic scale. Her dissertation, on the other hand, pre-

sents a detailed study of the interval structure, which 

shows substantial similarities to the data that I collected. 

Nevertheless, the author’s choice to describe the pitches of 

all the positions in relation to the closest tempered notes 

unnecessarily complicates the description of the actual in-

tervals between them: for this reason, I preferred to discuss 

the intervals simply by taking into account their relation to 

the fundamental pitch. Moreover, the author claims that 

the westia “is always played open” (2012: 128), whereas 

at least two additional positions, and the relative high-

pitched notes, are sometimes obtained on it. The musicians 

that I interviewed could not show them to me one by one, 

as they used them only in the climaxing moments of the 

performance and during very fast melodic movements. For 

these reasons the Tables that I presented did not cover 

those positions. Through the analysis of the recordings, 

however, those notes seem to be tuned at an interval of a 

fourth and a second – variably interpreted – from the wes-

tia note, thus replicating the mode. 
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The interval structure described here, like the ones in 

Sum (2012: 127 et seq.), are constructed in relation to the 

pitch of the dir string, which acts as the main fundamental 

of the mode: as it is the lowest note that a guembri could 

produce, musicians cannot go below it. In other songs, 

whose use is less widespread, musicians instead use a 

modal structure that constantly refers to the tehtia as the 

main fundamental, thus providing the option to go below 

it using the dir. From what I was able to observe those 

modes substantially reconstruct the same interval structure 

discussed, but transposed up a fourth. Musicians thus play 

on the dir notes that have the same structural function of 

the first and second position on the tehtia in the mode dis-

cussed in the Tables: a fourth (open string dir) and a major 

second (first dir position more advanced on the bridge) be-

low the tehtia pitch. The musicians also move the first po-

sition on the tehtia slightly back to accommodate the pitch 

of the neutral second. Some songs of the Gnawa repertoire 

that use this mode also add a position on the tehtia that 

produces a major third from the fundamental, and some-

times the first position on it gets lowered even more until 

it’s somewhat close to a minor second from the fundamen-

tal. The relative rarity of those songs and the time con-

straints of my research did not permit me to collect enough 

documentation to be able to give a proper account of those 

modes. 

6. CONCLUSIONS 

This paper has briefly assessed how musicians construct 

the intervals that compose the main modal structure used 

in Gnawa music in a strikingly recognizable way. That 

structure functions as an identity marker for those who af-

filiate with the Gnawa brotherhood. They recognize it and 

reproduce it through their music, alongside all the other 

elements that compose their rituals, not only to achieve the 

performance and the intervening people’s needs, but also 

to reproduce and regain possession of the heritage of the 

founders of the brotherhood in a culturally accepted way. 

As briefly discussed in the introduction, this discourse 

is especially relevant in the contemporary situation. Nota-

bly, not all Gnawa musicians (and not all people who at-

tend to Gnawa rituals) are from or can prove with certainty 

to have ancestors from the Western or Central African 

countries, but strikingly all of the people I interviewed 

strived to demonstrate to me that some branch of their fam-

ily had some kind of ties to those regions. Even if they do 

not or cannot prove those ties, by affiliating with a broth-

erhood whose name etymologically means “black peo-

ple”13 they are still identifying themselves in a particular 

manner, that further enters in a complex dialogue with the 

Moroccan social context. Gnawa musicians have earned 

the favor of local and international tourism, and despite ra-

cial discrimination, they achieved fame, acceptance, and in 

many cases a strong sense of affiliation from Moroccans: 

                                                           
13 See the complete etymology in El Hamel (2008) 

and that happened also because of the specific qualities of 

their music. 

What is also happening in recent years, though, is that 

European and North American producers have been appro-

priating the local Gnawa expertise and culture, while some 

local music producers are struggling to accommodate to 

the aesthetics of the international audience, without any 

considerable monetary return for the participants. A sim-

ple but self-explanatory example of a widespread behav-

iour: a 17 year old black man I met in Essaouira, named 

Abdou, son of a Berber family who has lived for nearly 

three generations in Morocco after moving from Sudan 

and who now resides on the Atlas mountains, is an ex-

tremely skilled Gnawa dancer and qraqab player. During 

the 2016 International Festival of Gnawa Music in Essa-

ouira he danced, played and sung for four days and four 

nights. Because of his expertise, most of the times he per-

formed as soloist in front of the dancers group, led the pa-

rades, and animated with his infinite energy the perfor-

mances. The producers of the festivals promised to pay 

him five hundred dirhams, or about fifty euros. Three 

months after the festival he was still waiting for the pay-

ment. 

European and American music industries abuse the 

musicians by poorly compensating them for their expertise 

while pretending to give them international visibility. The 

music managers treat the musicians without regard for the 

complexities of their traditions, and this fetishization prob-

ably operates as a further justification for the musicians’ 

low compensation. When participating in those festivals, 

Gnawa musicians tune down, flatten and abandon the 

same differences and elements that distinguish them, while 

at the same time they exaggerate other elements for the 

sake of spectacularization. As seen in the analysis of Ha-

mid’s recording, all the nuances of the Gnawa modal struc-

ture were completely annulled and absorbed in the tem-

pered scale, leaving only a short-lived and culturally 

opaque musical result.14 

Even if it is not possible to know the future impact of 

those festivals on the local practices of the Gnawa broth-

erhood, today the ṭarīqa is still renowned and beloved by 

Moroccans, who seek the Mâallem’s expertise for their 

private lila, which still produce the major income for those 

musicians. In the lila, and in the less formal and secular 

performance opportunities for tourists in locally-managed 

restaurants, the Gnawa are still engaging on their terms for 

social and financial gain, while keeping their tradition 

alive. 

The interval details discussed in this article, other than 

pointing out some transformations occurring inside some 

of the contexts where Gnawa musicians operate, open up 

at least two observations. This data could be a useful doc-

umentation in researches about the positionality of Gnawa 

musicians in Morocco, and about the geographical prove-

14 For a general discussion of the system of music festivals in the field of 
ethomusicology, see Staiti (2013). 
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nance of the founders of the brotherhood. The ethnomusi-

cological attention to the technical details of the construc-

tion of the Gnawa repertoire could also make way for a 

deeper and clearer research that interrogates the relations 

between the elements through which the rites are per-

formed and the technical nuances that construct the musi-

cal performance. 

7. APPENDIX: DARIJA TERMS 

A foreword: Darija is an oral language, hence the transcriptions 

of the words may vary depending on the nationality of the tran-

scriber. Here I try to offer the reader a concise explanation of the 

words used in the article, while trying to follow the most com-

monly accepted way of writing them down. 

 

Mâallem: Master. In the ritual contexts he covers the roles of 

main singer, guembrì player and knowledgeable con-

troller of the flow of the rite. While the vast majority 

of the Gnawa musicians are men, women are not for-

bidden to become qraqueb or guembrì players and 

singers, and at the end of a long training, mâallem. 
Guembrì: a drum-lute with three strings mounted on a neck em-

bedded in a hollow half log covered with a stretched 

camel skin. The bridge transmits the vibration of the 

strings to the camel skin, which the player can also beat 

with his fingertips at the end of the strumming move-

ment. The skin has a hole at the bottom for acoustic 

reasons. The neck does not go through the whole log 

but stop short a few centimeters from the lower part, 

right below the hole in the skin: the lower ends of the 

strings are tied here. The three strings have different 

length (one is much shorter than the others), and the 

pitch of the instrument is overall rather low. During the 

evocation of the spirits the Gnawa players attach a me-

tallic palette at the head of the instrument with small 

rings embedded in it, to add some metallic timbre to 

the instrument. A smaller version of the guembrì used 

only in specific ritual contexts is called hajhuj. 

Qraquab: set of two metallic castanets, with two hollow cavities 

each. Gnawa people say that they reproduce the sound 

of the chains that tied the hands and feet of the slaves. 

Dir, tehtia, westia: the names of the strings of a guembrì, ordered 

by pitch from lowest to highest. The names and mean-

ings that I offer here differ from those described in Sum 

(2012: 217), both in the way I spell the phoneme and 

in the meaning. When the Mâallem is holding the in-

strument the position of the strings, seen from the per-

spective of a frontal onlooker, is as follows: 

 _______________ dir 

_________ westia 

_______________tehtia 

The information is particularly relevant because the 

names relate to their position. Tehtia literally means 

“something below”, while westia means “something in 

the middle”. As for dir, it means “the space between”: 

it could be between two mountains, a hollow or a val-

ley. As the dir has the deepest sound (lowest pitch) of 

the three, the topographical reference makes sense, in 

a metaphorical way. I thank Badr Dammouch and Za-

karia Rhani for their linguistic commentary on the 

meaning of those terms. 

Ṭarīqa: a sufi brotherhood. 

Zaouïa: a house-sanctuary owned by the descendants of the 

founder of a Ṭarīqa, or the construction where his body 

was entombed. The zaouïa is the place where the major 

indoor rituals are performed, although they are also 

carried out inside private houses. 

Lila: “night”. It’s the term used to designate the rituals, as 

they span through the night hours from evening to 

morning. 

Šalaba: a song performed in the first part of the lila, before the 

summoning of the spirits. It relates to the ritual pouring 

of mint tea for the guests. The lyrics of the song invite 

everyone to participate by drinking the sacred bever-

age: “Šalaba titara difu li Allah”. “Šalaba” is the 

Gnawa term for “to drink”; “titara” recalls the sound of 

the bells of the water sellers in Moroccan medinas. 

Among the Gnawa, “titara” could also be directly 

translated to “tea”, seen not as a normal drink, but as 

one charged with ritual meaning, so the whole sentence 

could be translated as “Drink the ritual and celestial 

tea, oh guests of Allah”. I thank Silvia Bruni for her 

research and insights regarding the ritual use of the 

song, the lyrics and their meanings. 
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ABSTRACT

This paper presents a corpus-based study on rhythmic patterns in
ragtime and jazz. Ragtime and jazz are related genres, but there
are open questions on what specifies the two genres. Earlier stud-
ies revealed that variations of a particular syncopation pattern, re-
ferred to as 121, are among the most frequently used patterns in
ragtime music. Literature in musicology states that another pat-
tern, clave, is often heard in jazz, particularly in songs composed
before 1945. Using computational tools, this paper tests three hy-
potheses on the occurrence of 121 syncopation and clave patterns
in ragtime and jazz. For this purpose, we introduce a new data
set of 252 jazz MIDI files with annotated melody and metadata.
We also use the RAG-collection, which consists of around 11000
ragtime MIDI files and metadata. Our analysis shows that syn-
copation patterns are significantly more frequent in the melody
of ragtime pieces than in jazz. Clave on the other hand is found
significantly more in jazz melodies than in ragtime. Our findings
show that the frequencies of rhythmic patterns differ significantly
between music genres, and thus can be used as a feature in auto-
matic genre classification.

1. INTRODUCTION

Ragtime and jazz are two related genres, both often re-
ferred to as “syncopated music”. However, one would not
classify Scott Joplin’s “The Entertainer” as jazz, neither
would one call Miles Davis a ragtime composer. Yet it is
difficult to pinpoint the differences between ragtime and
jazz.

From musicological literature, there is evidence that both
genres have some characteristic rhythmical patterns. One
particular syncopation pattern is considered typical for rag-
time (Berlin, 1980), while the clave pattern would be more
typical for jazz music (Washburne, 1997). In this paper, we
study these patterns by testing musicological hypotheses
on data sets of ragtime and jazz music. For this purpose,
we introduce JAGAD, a new data set with 252 MIDI files of
jazz songs and annotated melody.

We analyze rhythmical patterns taking a corpus-based
approach. A corpus-based study is a fast and data-rich way
of analyzing rhythmical patterns in many MIDI files. Our
research contributes to the fields of Musicology and Music
Information Retrieval (MIR). The results can for example
be used for automated genre classification, an important
task in MIR: if the frequency of occurrences of rhythmi-
cal patterns differs significantly between two genres, then
this could be used as a new musically meaningful feature,
improving music genre classification.

This study builds on earlier research by Volk & de Haas
(2013) and Koops et al. (2015). Both studies took a corpus-
based approach investigating specific syncopation patterns

in ragtime. Volk & de Haas (2013) tested hypotheses about
the occurrence of different variations of the same synco-
pation pattern in ragtime during different periods of the
ragtime era (1890 – 1919) and the modern period (1920
– 2012), using a data set of 11591 MIDI files of ragtime
pieces. Koops et al. (2015) showed that this syncopation
pattern is highly important for the ragtime genre, being
among the most frequently used patterns compared to all
other patterns.

Contribution. The contribution of the paper is twofold.
First, we test and confirm musicological hypotheses about
the occurrence of syncopation patterns and the clave pat-
tern in ragtime and jazz melodies using a data-rich ap-
proach, thereby contributing to the fields of musicology
and Music Information Retrieval (MIR). Second, we intro-
duce JAGAD, a newly collected data set of 252 jazz songs
with annotated melody. This data set is not only useful
for our current study, but can also be of great use in ad-
ditional analysis of the jazz genre or in future research on
automated melody finding.

2. CHARACTERISTICS OF RAGTIME AND JAZZ

In this section we describe characteristics of ragtime and
jazz, focusing on common rhythmical patterns of each genre
according to musicology.

2.1 Ragtime

Ragtime was the first black music of the United States that
achieved wide commercial popularity (Schaefer & Riedel,
1973). Berlin (1980) researches different theories as to
what contributes to ragtime as a genre, such as coon-songs,
cakewalk and two-steps. As a possible source of the rag-
time rhythm, he mentions dance music of the Caribbean
or South America, such as danzas, habaneras and tangos.
Hendler (2010) mentions four musical forms that are re-
lated to ragtime. The main two roots of ragtime are the
quadrille and march. A quadrille is a French contradance
- Jelly Roll Morton claimed to have written the famous
Tiger Rag from an old quadrille. The march and ragtime
are similar in structure. The next related musical element
is the cinquillo, which is a syncopated rhythm from the
Caribbean. The fourth and last root of ragtime mentioned
by Hendler are British popular melodies.

Nowadays, most people associate ragtime with piano
music, as they know Scott Joplin’s piano piece “The Enter-
tainer”, which has become widely known after it was used
as film score for “The Sting”. Contemporaries of the rag-

Proceedings of the 7th International Workshop on Folk Music Analysis, 14-16 June 2017, Málaga (SPAIN) 
ISBN: 978-84-697-2303-6

44



time period perceived ragtime more as a vocal form. There
also exist instrumental ragtime pieces, but piano pieces and
vocal songs can be considered the two main instrumenta-
tion categories of ragtime (Berlin, 1980).

Berlin (1980) distinguishes three subgroups of piano
ragtime: piano renditions of ragtime songs; “ragged” ver-
sions of preexisting unsyncopated music and original rag-
time compositions. Piano renditions of ragtime songs were
not always syncopated. In the second group, existing un-
syncopated music, for example marches, popular songs,
folk songs and pieces of classical music, was given a syn-
copated rhythm. But the lion’s share of ragtime music
comes under the third category: original ragtime compo-
sitions for piano. The best-known composers are Scott
Joplin, James Scott and Joe Lamb.

In ragtime, the melody usually is the highest pitched
line. In case of a piano piece, this is the right hand part of
the piece. The accompaniment in the left hand is charac-
terized by stable rhythmical patterns that follow the beat.

2.1.1 The 121 syncopation pattern

Musicologists and ragtime fans have argued that rhythmi-
cal patterns and syncopation provide the most distinct fea-
tures of the ragtime genre. A specific syncopation pattern
that is considered important in ragtime by Berlin (1980)
is ’short-long-short’ or 121 syncopation. The 121 pattern
appears as ˇ “( ˇ “ ˇ “( in 4/4 meter or as ˇ “

===̌ “ ˇ “=== in 2/4 meter.
Berlin (1980) distinguishes three variants of 121 synco-

pation in ragtime. The two types that emerge as most im-
portant, are untied and tied syncopation. In untied synco-
pation, a pattern does not pass over a bar line and starts on
a strong metrical position. In 2/4 meter, the pattern starts
either on the first or on the second quarter note position.
In 4/4 meter, the pattern starts on the first or third quarter
note position. Tied syncopation refers to a pattern starting
on a weak metrical position. That is, in 2/4 meter it starts
at the second or fourth eighth note position and in 4/4 me-
ter it starts at the second or fourth quarter note position.
This way, tied syncopation either connects the two halves
of a measure, or it connects the second half of a measure to
the first half of the next measure. The third pattern is aug-
mented syncopation and differs from the other two as it
augments the 121 to the length of a complete bar. Figure 1
illustrates these patterns, here in 4/4 meter. On the right of
the figure, the patterns are notated in the “onset represen-
tation”. This is a string with four entries per quarter note.
This means that each sixteenth note is represented by one
character. If a sixteenth note has an onset, i.e. the start
of a note, then the corresponding character is a one. On
the other hand, if the sixteenth note has no onset, then the
corresponding character is a zero. The dot is a wild-card
that matches anything. We use this representation to find
patterns in the preprocessed MIDI-files.

2.2 Jazz

The origins of jazz form a contentious subject among musi-
cians, critics and academics. The general belief is that jazz
harmonies are based on European practices and that jazz

Figure 1: Syncopation patterns. From top to bottom: two
variants of untied syncopation, two variants of tied synco-
pation, augmented syncopation

Figure 2: Clave patterns: forward (a) and reverse (b)

rhythm came from Africa. However, Washburne (1997)
and Hendler (2005) throw light on the Caribbean contribu-
tion to jazz. The Caribbean influences on jazz are particu-
larly well audible by the rhythm patterns, as we will see in
Section 2.2.1.

Just like ragtime, jazz can be played on a piano. How-
ever, it is also commonly played by a jazz ensemble, for
example a jazz trio or a bigband.

In contrast to ragtime, it is not always the upper voice
that has the melody. For example, the string bass began to
be used as a solo instrument, generally from the 1940s on
(Kemfeld, 1995).

2.2.1 Clave pattern

In his study of the Caribbean contribution to the genre,
Washburne (1997) claims that the clave rhythm is often
heard in jazz. This rhythm consists of a syncopated and
an unsyncopated part. There are two directions: in for-
ward (or 3-2) clave the syncopated part comes before the
unsyncopated part; in reverse (or 2-3) clave it is the other
way around. The prototypical patterns of forward and re-
verse clave are illustrated in Figure 2a and Figure 2b re-
spectively. However, a lot of variations on this pattern are
considered as clave. Though Washburne (1997) provides
some guidelines, it is not evident to determine if a music
phrase or bar is in clave - even for trained listeners.

For this reason,Vurkaç (2012) analyzed the clave and
from his research, a new data set was developed, which can
be downloaded from the UCI learning repository (Lich-
man, 2013) 1 . This data set contains 10800 bars in onset
notation. Each bar has a label of four bits, indicating the
clave direction. 0 0 1 0 and 0 1 0 0 are the clave direc-
tions forward and reverse, respectively. The neutral cate-
gory, labeled 1 0 0 0, refers to patterns that do not detract

1 https://archive.ics.uci.edu/ml/datasets/Firm-Teacher Clave-
Direction Classification
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Bar onsets Label Type
1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1
1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 Incoherent
1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1
1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 Forward
1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 0
0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0
1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 Reverse
0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0
0 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 Neutral
0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0

Table 1: Examples from the UCI clave direction data set

from clave, but do not establish or support any clave di-
rection either. The incoherent category (0 0 0 1) refers to
patterns that, in addition to not being in either clave direc-
tion, actively oppose the establishment of such. Vurkaç de-
termined these categories based on both double-blind lis-
tening tests and informal interviews with four professional
master-musicians, as well as decades of studying the mu-
sic. Table 1 shows three examples per class of the data set.
Note that the data set does not give a label for all possible
onset combinations: 216 = 65536 > 10800.

Washburne (1997) points out that the clave pattern is
found in several aspects of jazz music: (1) in the rhythmic
breaks, for example just before a solo section; (2) in the ac-
companiment by the rhythm section; (3) in repetitive horn
backgrounds or riffs; (4) in the melody; and (5) in the
phrasing. In this paper, we investigate the occurrence of
the clave pattern in the melody of jazz and ragtime pieces.

From his search for samples throughout jazz history,
Washburne (1997) observed that some styles incorporate
the clave rhythm to a greater extent than others. The pat-
tern is found more often in early jazz (until 1945) than in
later styles.

3. A CORPUS BASED STUDY ON RHYTHM
PATTERNS IN RAGTIME AND JAZZ

From the characteristics of ragtime and jazz, as described
in the previous chapter, three hypotheses about rhythmic
patterns in the melodies of ragtime and jazz songs arise.

First, we have seen that tied, untied and augmented 121
syncopation patterns occur frequently in the melody of rag-
time songs. We suppose that this is typical for ragtime.
That leads to the first hypothesis:

Hypothesis 1 Tied, untied and augmented 121 syncopa-
tion patterns occur more frequently in the melody of rag-
time songs than in the melody of jazz songs.

The second hypothesis is based on the observation by
Washburne (1997) that it is easier to find examples in the
clave pattern in jazz before 1945 than in jazz of later pe-
riods. We wonder if this applies to the frequency of the
pattern in the melody too. So the next hypothesis is:

Hypothesis 2 The clave pattern occurs more frequently in
the melody of early jazz pieces (before 1945) than in the
melody of later jazz pieces (after 1945).

In our literature study, we have seen that Caribbean rhythm
patterns have influenced both ragtime and jazz. However,
we encountered the clave pattern particularly in literature
about jazz, and to a lesser degree in books on ragtime. We
therefore presume that the clave is more typical for jazz.
This leads to our third and final hypothesis:

Hypothesis 3 The clave pattern occurs more frequently in
the melody of jazz pieces than in the melody of ragtime
pieces.

We take a corpus-based approach to test our hypotheses.
To this end, we collect two data sets: one with ragtime and
one with jazz pieces. Our preprocessing step results in a
collection of labeled onsets of 240 jazz and 2579 ragtime
songs. The next step is pattern recognition, in which our
algorithm calculates for each pattern the proportion of bars
in which this pattern occurs. The remainder of this section
explains these steps in detail.

3.1 Data set collection

The ragtime data set is a subset of the RAG-collection, as
introduced before by Volk & de Haas (2013) and Koops
et al. (2015). The complete collection contains 11591 MIDI
files of ragtime music. Metadata is added to this data set
using a ragtime compendium, consisting of around 15000
ragtime compositions.

Since there were no comparable data sets available for
jazz music, we collected a new data set, called JAGAD (Jazz
stAndard Gioia Annotated Data set). It should be a collec-
tion of songs that is representative for the jazz genre, and
of a suitable size: it should consist of sufficient songs to
test the significance of aforementioned hypotheses.

The Jazz Standards by Ted Gioia (Gioia, 2012) is a com-
prehensive guide that lists 252 important jazz composi-
tions. For our data set, we extracted relevant metadata from
all songs in this book: the title, composer, lyricist (if appli-
cable) and year of first publication. Subsequently, we lo-
cated the MIDI files through an extensive web search. As
there exist many websites of jazz MIDI files, we were able
to find a suitable MIDI for each song. The files have vari-
ous instrumentations: for example jazz trio, solo piano or
big band. In all cases, we chose MIDI’s where the melody
is clear in at least one channel.

As a next step, the MIDI data has to be prepared for
the pattern recognition step. Data preparation consists of
melody finding, quantization and filtering of relevant songs.

3.2 Melody finding

Melody finding of the ragtime data set is done automat-
ically, using the skyline algorithm with dip detection, as
described by Volk & de Haas (2013). This algorithm takes
the highest sounding note when multiple notes sound si-
multaneously. To overcome that the highest notes from
the accompaniment are classified incorrectly as part of the
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melody at sections where there is no melody, their algo-
rithm sets a lower limit: all notes below the middle C are
classified as accompaniment. Also, after performing the
skyline algorithm, notes that are characterized by an inter-
val down greater than 9 semitones followed by an inter-
val up greater than 9 semitones are removed. Despite its
simplicity, this algorithm works very well for the ragtime
genre: evaluating this algorithm on a 435-piece subset of
the RAG-collection yields an F-measure of 0.978.

The skyline algorithm is based on the assumption that
the melody is (almost) always in the higher-pitched notes.
As this is not always the case in jazz (for example in a bari-
tone saxophone solo), the skyline algorithm is unsuitable
for extracting the melody in jazz songs. There are no other
melody extraction algorithms of which a comparably high
accuracy on jazz songs is known. That is why we annotate
the melody of the jazz data set by hand. To this end, we
use the MuseScore 2 software, which makes it possible to
listen to the music and examine a score, generated by the
program, at the same time. For each MIDI file, we store the
first and last bar number of the melody in a certain channel.
This way one or more tuples (barStart, barEnd, channelNr)
are associated with each MIDI file. In the following, we
only consider the notes that are at that moment part of a
melody channel.

The resulting melodies are not always monophonic, so
in the “melody channel” it is still possible that two or more
notes sound together. In order to extract the rhythm, the
melody channel has to be reduced to a monophonic line.
For this purpose, we apply the skyline algorithm (intro-
duced as “all mono” by Uitdenbogerd & Zobel (1999)) to
the melody notes.

3.3 Quantization

The next step is quantization. A MIDI file consists of note
on and note off messages, each starting at a certain time af-
ter the previous message. To be able to perform the pattern
finding step, we need to translate MIDI timing information
into a sixteenth note grid. Our algorithm extracts the note
on messages, which correspond to the onset of the note,
and quantizes using four bins per quarter note: each on-
set is assigned to the nearest sixteenth note, as described
by Koops et al. (2015). This way, a piece in 4/4 time is
represented as a list of 16-character onset strings.

3.4 Filtering relevant songs

Finally, only the relevant songs, that can be matched to the
121 syncopation and clave patterns, are filtered.

In earlier work by Volk & de Haas (2013) and Koops
et al. (2015), ragtime songs in 2/2, 2/4 and 2/2 are se-
lected, which have only one meter and start at MIDI tick 0.
Furthermore, only rags with a normalized average quanti-
zation error up to and including 2% of the corpus are se-
lected. This preprocessing step leads to a list of onsets of
2579 rags.

2 https://musescore.org/

For the jazz data set, we exclude songs that are not in 4/4
time. This is the case for 12 of the 252 jazz pieces. Omit-
ting these pieces, we have our final preprocessed dataset of
onsets of 240 jazz songs.

3.5 Pattern recognition

After creating and preprocessing the data sets, we proceed
to the next step: pattern finding, in which we calculate the
proportion of bars in which syncopated 121 patterns and
the clave patterns appear.

For the tied, untied and augmented 121 syncopation pat-
terns, pattern recognition is straightforward: our algorithm
matches each bar (and the first half of the next bar) to each
of the patterns and keeps up counters for each of the three
121 syncopation patterns. Then, the results are averaged by
dividing each counter by the number of bars of the song.

For matching the clave pattern, a bit more work needs
to be done. We use the UCI data set mentioned in Sec-
tion 2.2.1. For each song, our algorithm counts the number
of bars that are in the UCI data set (nrSpecified) and the
number of bars that are labeled as forward (nrForward) and
reverse (nrReverse) clave. For each song, three real values
are calculated, indicating the amount of clave:

claveForward =
nrForward
nrSpecified

(1)

claveReverse =
nrReverse

nrSpecified
(2)

maxClave = max(ClaveForward,ClaveReverse) (3)

4. RESULTS

Having computed the proportion of each pattern per piece,
we can now statistically test the three hypotheses intro-
duced in Section 3.

4.1 121 syncopation patterns - ragtime versus jazz

To compare 121 syncopation patterns in the melody of rag-
time and jazz music, we analyze ragtime and jazz sepa-
rately. Table 2 shows the average and median of the pro-
portions of bars in which each variation of the 121 synco-
pation pattern occurs in ragtime and jazz. In the ragtime
data set, on average 15% of the bars contain a tied pattern;
in the jazz data set, this is only 1.2%. For the untied pat-
terns, the difference is only a bit smaller: 12% in ragtime
as opposed to just 1.5% in jazz. The augmented pattern
is not seen very often in the ragtime part (4.0%), but even
less in the jazz part: 0.3%.

Note that the syncopation patterns occur so little in jazz
that all median values are zero. Figure 3 is a box plot that
compares the syncopated patterns in ragtime (blue) and
jazz (black).

The jazz and ragtime dataset are very different in size.
Therefore, to test the statistical significance of the differ-
ence in 121 patterns in the ragtime and jazz dataset, we per-
form bootstrapping for each of the three 121 syncopation
patterns. We compare the 240 jazz pieces with 240 uni-
formly randomly sampled ragtime pieces, and repeat this
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Tied Untied Augmented
Ragtime Average 0.1497 0.1197 0.0398

Jazz Average 0.0123 0.0153 0.0030
Ragtime Median 0.0842 0.0828 0

Jazz Median 0 0 0

Table 2: Syncopation patterns in ragtime and jazz: average
and median of the proportion of bars with the respective
pattern, over all songs of the genre.

Figure 3: Syncopation in ragtime and jazz

process ten times. Testing for significance using Wilcoxon
rank-sum tests for each 121 syncopation pattern, we find
a significant difference with p � 0.01 for every random
sample. Therefore, we can conclude that all three 121 syn-
copation patterns occur significantly more frequently in the
melody of ragtime than in jazz pieces, so we accept Hy-
pothesis 1.

4.2 Clave pattern - early versus late jazz

In order to test if the clave pattern occurs more frequently
in the melody of early jazz pieces than in the melody of
later jazz pieces (Hypothesis 2), we divide the jazz data set
into early (year < 1945) and late (year ≥ 1945) jazz. Our
data set consists of 148 early jazz pieces and 92 songs of
late jazz. We examine the differences between early and
late jazz in the proportion of forward clave, reverse clave
and the maximum of both directions.

From the results plotted in Figure 4, we see clearly that
there is no difference in the use of the clave pattern in the
melody of jazz before and after 1945. Forward clave seems
to occur a bit more often in early jazz (blue) while reverse
clave occurs a bit more frequent in late jazz (black). When
we look at the maximum of both directions, the percentage
of clave bars is even very similar.

To test for significant differences, we use bootstrapping
for each of the three clave pattern variants. We compare
the 92 late jazz pieces to a uniform random sample of 92
early jazz pieces. Performing in total 30 Wilcoxon rank-
sum tests (for each clave variation and for each random
sample) reveals that the differences are not significant: p >

Figure 4: Clave pattern in early (before 1945) and late
(from 1945) jazz

Figure 5: Clave pattern in ragtime and jazz

0.05 for all samples.
To conclude, our hypothesis that the clave pattern is

more used in early jazz than in late jazz seems not to be
acceptable when examining just the melody. We find this
outcome somewhat surprising, as it does not correspond to
earlier observations by Washburne (1997).

4.3 Clave pattern - ragtime versus jazz

For our final hypothesis, we compare our ragtime to our
jazz data set. In Figure 5 we see clearly that all clave pat-
tern directions occur more in jazz than in ragtime. This
difference is most obvious when looking at the maximum
of both directions: in ragtime, on average 16% of the bars
has the largest clave direction; for jazz, this is as much as
29%. Again, we perform bootstrapping and compare the
240 jazz pieces to a uniform random sample of 240 ragtime
pieces using Wilcoxon rank-sum tests. We can conclude
that these differences are highly significant with p � 0.01
for all 30 samples. So we accept Hypothesis 3: the clave
pattern occurs more frequently in the melody of jazz pieces
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than in the melody of ragtime pieces.

5. DISCUSSION AND CONCLUSION

In this paper, we investigated the occurrence of several
rhythm patterns of ragtime and jazz melodies. We per-
formed a corpus-based study, using computational tools,
contributing to the fields of musicology and Music Infor-
mation Retrieval. As part of our research, we introduced
JAGAD, a new data set of 252 jazz MIDI files with anno-
tated melody.

Based on literature research in musicology, we formu-
lated three hypotheses. After performing our corpus-based
study, we accepted two hypotheses and rejected a third.
The tied, untied and augmented 121 syncopation patterns,
as mentioned by Berlin (1980), occur significantly more
in ragtime than in jazz. Clave patterns on the other hand
occur more frequently in jazz than in ragtime. These out-
comes can be used in an automated genre classifier by
adding features for the frequencies of syncopation and/or
clave patterns: songs with many syncopation patterns are
more likely to be ragtime, while songs with many clave
patterns are more likely to be jazz. Our last hypothesis,
which states that clave patterns are more frequent in early
jazz than in late jazz, could not be confirmed.

This research is a next step in the study of typical rhyth-
mic patterns in ragtime and jazz. To investigate if tied and
untied syncopation patterns and the clave pattern are truly
characteristic for ragtime and jazz respectively, more re-
search on the frequency of these patterns in other genres is
needed.

Finally, it would be interesting to examine the frequency
of the clave pattern in jazz in other aspects than just the
melody. This pattern may occur more often in for example
the rhythm or brass section. It is possible that we find a
bigger difference between early and late jazz here, which
would be in favor of Washburnes hypotheses.
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ABSTRACT 

Tunings and intonations in the Lithuanian traditional fiddling are 
analyzed. 14 archival recordings from 1930s are applied for the 
acoustical analysis. A huge variety in the individual tunings and 
intonations is found. Although the fiddles were tuned mostly in 
the standard way, i.e. in perfect fifths, the fifths are quite “rough”. 
The scales show a strong tendency towards the constituent inter-
val equalizing, or, in other words, certain hybrid scales between 
the diatonic and equidistant ones are estimated. Concerning the 
temporal intonations, influence of fiddling motorics and the re-
lated influences of bowing force and pitch duration are discussed. 

1. INTRODUCTION 

Fiddle tunings in the European musical traditions gener-
ally follow the standard scheme (“in fifths”), although cer-
tain cross-tunings are also frequent (cf. Gurvin, 1968; An-
markrud, 1992; Ward, 2013). For the present study, more 
important are the deviations of the tunings and the whole 
scales from 12TET (the twelve-tone equal temperament). 
The characteristic deviations leading to the concepts of 
“blue notes” or “neutral tones” are quite common, for in-
stance, in the Scandinavian and Irish folk music. It is in-
teresting to examine the Lithuanian traditional fiddling in 
this context. 

Fiddle in Lithuanian tradition was mostly used in bands 
to accompany dances. Older types of the bands contained 
archaic and newer instruments, such as the lamzdelis (a 
type of simple recorder), birbynė (a reed pipe), kanklės (a 
zither-type instrument), dulcimer, fiddle, and basetlė (a 
bass similar to double bass). The band composition varied 
among the ethnographic regions. With the introduction of 
the accordion, in the 19th and early 20th centuries, the 
bands changed considerably. The newer groups contained 
almost by necessity an accordion (Petersburg accordion, 
bandoneon, concertina, etc.) and one or more fiddles. 
These two instruments still can be documented in field-
work and are the most popular in contemporary folk dance 
bands. For instance, more than 700 folk fiddlers are regis-
tered in Lithuania (Kirdienė, 2000). A drum and/or basetlė 
form the rhythm section. Sometimes a clarinet, coronet, 
and other newcomers would find their way into the band 
as well. 

Similarly as in other traditions, the Lithuanian fiddles 
were tuned mostly in the standard way, i.e. in perfect 

                                                           
1Later on, we will find that the fifths are quite “rough”. 
2 See the Appendix for the fiddler and tune markings, and the detailed 
information. 

fifths1, although some alternative tunings (scordaturas) are 
also documented (Kirdienė, 2000, p. 83). 

2. SAMPLE AND METHOD 

For the present study, I employ the recordings found in the 
collections Nakienė & Žarskienė, 2003; 2004; and 2005. 
These collections represent Lithuanian traditional music 
from different regions as recorded in the 1930s.2 As a re-
sult, we can presume that the instrumental pieces we will 
analyze reflect relatively old and typical traits of the music. 

There are 14 fiddle solo or duo pieces presented in the 
collections. Four are from Aukštaitija (northeastern Lithu-
ania), three from Dzūkija (southeastern Lithuania), and 
seven from Suvalkija (southwestern Lithuania). They rep-
resent performances by eight fiddlers (Figure 1).3 

 

 
 
Figure 1. Ethnographic regions of Lithuania. Locations of 
the fiddlers discussed in the paper (F1, F2…) are indicated. 
 

For the acoustical measurements, software Praat was 
applied. I determined the tunings of the instruments from 
their LTAS spectra unless the intonations were noticeably 
unstable. In the latter case, I performed a more accurate 
analysis; for instance, I measured pitches note by note or 
generalized the intonations in particular music contexts. 

3 There are more fiddle recordings in the collections by Nakienė & Žar-
skienė, but in groups with other instruments. 
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3. GENERAL SCALE TRAITS 
3.1 Open String Tunings 

Regarding the open string tunings, we can only consider 
the three higher strings (D, A, E) because the lowest one 
(G) appears clearly in only three performances, T2, T8, 
and T11. Here I use the standard markings for the four fid-
dle strings; the actual pitches differ. In every discussed ex-
ample, the tunings are lower than the standard ones (Fig-
ures 2 and 3). Fiddler F4 tuned his fiddle the lowest, with 
the E string down-tuned by a minor third, or 325 cents. 
Next was F3 (244–301 cents), F2 (245–253 cents), F5 
(220–243 cents), F7 (146–164 cents), F1 (86–96 cents), 
and, finally, F6 (43–47 cents). 

The strings are tuned in rough perfect fifths; any defi-
nite general tendency of stretching or shrinking the fifths 
does not show up. Nevertheless, there are certain tenden-
cies in the tunings by the individual musicians. The fifth 
D–A is narrowed, while A–E is widened in the four 
Aukštaitian performances. There is an inverted tendency 
in F3 tunings. Fiddlers F4, F5, and F7 stretched both fifths. 
It becomes the case that, no matter how the A is tuned, the 
ninth D–E is always stretched; it is wider than a 12TET 
ninth by 9–41 cents, with a median of 24 cents. 

3.2 Scales with Reference to a Tonic 

Concerning the scales with reference to a tonic, the perfor-
mances show noticeable scatter. The II degree ranges from 
171–205 cents (F7) to 228 cents (F4), with a median of 202 
cents. The case of the III degree is more interesting. Except 
for fiddlers F1 and F4, who intone slightly stretched major 
thirds, 409–412 cents, the other fiddlers use flattened into-
nations, down to even 360–380 cents (F6 and F7). The IV 
degree shows very different intonations, ranging from 475 
to 553 cents, with a median of 504 cents. The V and VI 
degrees in the Suvalkian scales show somewhat less scat-
ter; 681–715 cents for the V degree and 875–928 cents for 
the VI. However, fiddlers F2, F3, and F4 flatten these de-
grees noticeably; They intone the V degree at 684–696 
cents and 869–886 cents for the VI. Still higher scale de-
grees appear only in the analyzed Suvalkian performances. 
The VII scale degree is typically slightly flattened, at 
around 1086–1098 cents, whereas the VIII degree (octave 
tonic) is mostly sharpened. Fiddlers F5 and F6 intone at 
1209–1238 cents, but F7 flattens to 1187 cents. Im-
portantly, the general tendency of stretching is observed 
for higher pitches (octave equivalents), as well. A compar-
ison of the different pitches separated by octave gives the 
range for the mistuned octaves from –7 to +50 cents, with 
median of +8 cents. The stretching tendency seems to be 
similar for the pitches below the tonic as well, yet there is 
too little data to state this confidently. At any rate, low in-
tonations of the 7 degree are clearly pronounced; they 
range from –98 to –162 cents, with a median of –124 cents. 

 
 
Figure 2. Scales in Aukštaitian (F1, F2) and Dzūkian (F3, 
F4) fiddle performances. Crossed diamonds denote open 
strings and squares denote tonics. The white diamonds de-
note episodic alternative intonation. 
 

 
 

Figure 3. Scales in Suvalkian fiddle performances. 
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3.3 Diatonic Contrast 

For the generalization of interval asymmetries in the fiddle 
scales, we will apply the index of diatonic contrast (DC; 
Ambrazevičius, 2006, p. 1818). It was introduced as the 
method of evaluating whether the scale is “more diatonic” 
or “more in equidistant steps” (“more equitonic”). In other 
words, the DC defines “by how much the scale is dia-
tonic.” The succeeding constituent intervals (i.e. the inter-
vals between the adjacent scale degrees) are pooled into 
two groups of “small” (ds) and “large” (dl) intervals. The 
following expression for DC is applied: 
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where N = Ns + Nl is the total number of intervals; thus N+1 
is the number of scale degrees. The l)(sd /  means either 

sd  or ld , depending on the attribution of di.  
The formula gives different DC values depending on 

the grouping. The largest possible value is defined as the 
actual DC. Defined this way, the diatonic contrast is nor-
malized to 12TET, that is, if the value of the DC is 1, then 
it means that the corresponding set consists of scale de-
grees separated by tempered whole tones and semitones. A 
DC value of 0 means ideal equitonics or equal intervals 
between degrees (Figure 4). 
 

 
 

Figure 4. Diatonic contrast. 
 

The more clearly the constituent intervals of a scale 
cluster into two groups (‘small’ and ‘large’ intervals), the 
larger the DC is. The method of DC is intended to evaluate 
the overall asymmetry of an intervallic structure. It does 
not detect the individual differences between the scales, 
e.g. between the minor and major modes. 

 
F1 F2 F3 F4 

T1 T2 T3 T4 T5 T6 T7 
.89 .83 1.39 .25 .34 .45 .48 
 

F5 F6 F7 
T8 T9 T10 T11 T12 T13 T14 
.80 .30 .47 .05 .13 .55 .13 

Table 1. Diatonic contrast for the scales of fiddle perfor-
mances. 

                                                           
1 Of course, only the intervals between adjacent scale pitches are consid-
ered. The gaps in the scales (i.e. if some of the pitches are not used in the 
tune) are not considered. 

Application of the discussed method to the scales in 
Figures 2 and 3 results in very diverse values for DC (Ta-
ble 1).1 Even the individual fiddlers show quite flexible 
scaling patterns from the perspective of scale asymmetry. 
Importantly, majority of the scales are closer to equitonic 
than to diatonic scale. 

4. LOCAL SCALE DYNAMICS 
4.1 Flexible Intonation: General Matters 

Besides the static aspects of the fiddle scales, there are 
some interesting phenomena of dynamic intonation. First 
of all, the performances by the different musicians show 
different pitch stability. Second, scale degrees sometimes 
differ considerably in their intonation stability. Compare, 
for example, the stability of the 5 and II scale degrees re-
alized by open strings with the stability of other scale de-
grees in the performance T10 (Figure 6). Consider the flex-
ible intonation in this piece, especially of the VII degree 
(Figure 7). There are several causes of and aspects to the 
differences. Obviously, the left hand’s position and finger-
ing matter. Therefore, naturally, the pitches of the open 
strings are expected to be intoned the most steadily. 

4.2 Influence of Bowing Force 

Even the pitches of the open strings, as well as the rest, are 
slightly affected by bowing force. The force phenomenon 
is observed, for instance, in T11; it results in a double peak 
for the tonic in the LTAS (Figure 9). This degree (note G4 
in Figure 8) is more accented in the first occurrence of the 
sequence G4–B4–G4–B4 (see the first G4, with an arrow, 
in Figure 8) and played more smoothly in the second oc-
currence. Therefore, the first pitch is higher than the sec-
ond one by 65 cents, on average. It is reasonable to con-
sider the lower pitch as performed in a “normal” way and, 
hence, as the “correct” pitch of the scale. 
 

 
 
Figure 5. Transcription of the beginning of T10. For de-
tailed intonations, see Figure 7. 
 

 
 
Figure 6. LTAS of T10. The most prominent scale degrees 
are marked. 
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Figure 7. Pitch track of the first phrase of T10; see the 
transcription in Figure 5. Dotted lines indicate the meas-
ured average pitches of the scale degrees. Vertical arrows 
indicate the local intonation of the scale degrees. Long tilt-
ing arrows indicate the change of the VII degree intona-
tion. 
 

 
 
Figure 8. Transcription of the beginning of T11. Detailed 
intonations not depicted. 
 

 
 
Figure 9. LTAS of T11. The most prominent scale degrees 
are marked. 
 

4.3 Influence of Pitch Duration 

Because of the different motoric patterns, pitches produced 
with one fingering may differ from the pitches produced 
with another fingering. An additional factor is pitch dura-
tion. See T3, for instance. The V degree (the highest note, 
F5, in Figure 10) is performed on the A string with an un-
comfortably high position; the notes are short, and the fin-
ger has to move quickly to its position. Therefore, shorter 
notes tend to be performed with slightly flattened pitches 
(Figure 11). When interpreting the musical scale, it is rea-
sonable to accept the longer pitches, or, in other words, the 
pitches not affected by the technical motoric constraints, 
as the “correct” ones.2  
 

                                                           
2 We possibly encounter cases when there are no occurrences of the ana-
lyzed scale degree that are not affected by the constraints. Then we con-
sider the occurrences that are affected the least bit possible, yet we should 
keep in mind these are still not “correct.” 

 
 
Figure 10. Transcription of the beginning of T3. Detailed 
intonations not depicted. 
 

 
 
Figure 11. Fiddle piece T3. Dependence of the intonations 
of the V degree on pitch duration. 
 

It is not clear whether the changeable intonation of the 
tonic (Figure 12) could be explained by similar technical 
causes or, rather, by certain intentional “chromaticisms.” 
The latter option seems to be less possible, as the two pitch 
zones are not distinctly separated. We suggest that the 
“correct” pitch of the tonic is the lower one, as it is realized 
by longer notes and in more relevant metric positions. 
 

 
 
Figure 12. Fiddle piece T3. Intonations of the first 14 oc-
currences of the tonic. White diamonds show B♭ 4 in the 
second measure (Figure 10) and in similar sequences. 
Black diamonds show B♭ 4 in the fourth measure and in 
similar sequences. 
 

There are more instances of local intonations that de-
pend on the musical contexts in the discussed perfor-
mances. In T13, the IX degree (the octave counterpart of 
the II degree) is intoned sharper in the first part of the tune 
and flatter in the second part, after modulation. The differ-
ence is even about 70 cents. Again, it is reasonable to con-
sider the longer pitches as the “correct” ones. In this case, 
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those are the higher pitches. They are denoted by the cor-
responding black diamonds in Figure 3, and the white dia-
monds denote the lower pitches. In T14, the VII degree 
shows even three characteristic intonations in different 
contexts (Figure 3). Performance T14 is also interesting for 
a “sliding” technique: Fiddler F7 typically applies slight 
positional shifts while producing individual pitches (Fig-
ure 13). 
 

 
 
Figure 13. T14. Fragment of spectrogram; the first period 
of the piece. 

5. DISCUSSION 

The analysis showed a huge variety in the individual tun-
ings and intonations. However, some generalizations can 
still be made. First, the fiddles were tuned more or less (up 
to three semitones) lower than prescribed by the standard 
G-D-A-E scheme. One reason could be the fact that the 
fiddlers used to accommodate to accordions while playing 
in the band (Kirdienė, 2000, p. 83). The lowered fiddle tun-
ing has been observed in other traditions as well (cf. Ward, 
2013). Second, and more interesting, the tendency toward 
scale stretching is noticeable. Third, while diatonic major 
patterns seemingly prevail, the significant flattening of the 
VII degree and its octave equivalent 7 degree, as well as 
the flattening of the III degree in some cases, diminish the 
diatonic contrast. These quasi-equitonic tendencies are 
most clearly pronounced in the performances of fiddlers 
F3 and, especially, F6. For instance, the scale fragment I–
VIII in T11 shows the following interval sequence: 221–
159–173–150–219–175–142 cents. The conclusion about 
the tendency towards the constituent interval equalizing is 
supported by the evaluations of diatonic contrast. 

Actually the hybrid scales between the diatonic and 
equidistant ones make no surprise; various manifestations 
of such scales were abundantly traced in the Lithuanian 
traditional instrumental and vocal music (Ambrazevičius, 
Budrys, & Višnevska 2015), and elsewhere (cf. Grainger, 
1908–1909; Sevåg, 1974). It is very likely that such scales 
reflect relics of certain archaic musical thinking. Inci-
dentally, the deviations in these scales should not be con-
fused with quarter-tones characteristic, for example, of 
Middle Eastern maqam or Occidental quarter-tone (or mi-
crotonal) music, such as Ligeti. The deviations examined 
here neither are steady, nor intended as quarter-tones. 

The discussed scales are not static but rather dynamic, 
that is, the scale pitches are not equally intoned in the 
course of a performance. In addition to possible peculiar 
phenomena of musical thinking, here motorics of fiddling 
could be at work. The motorics determines more and less 

comfortable fingerings; fast passages produce less “relia-
ble” pitches compared to the slow movements. All this re-
sults in a performance “noise”, but supplemented with no-
ticeable systematic tendencies of intonation. 

6. APPENDIX 

The markings for fiddlers and tunes used in the body text 
are explained. The tunes T1–T4, T5–T7, and T8–T14 
come, respectively, from Aukštaitija, Dzūkija, and Su-
valkija regions, and are published in Nakienė & Žarskienė, 
2004; 2005; and 2003. The numbers in angle brackets in-
dicate the running numbers of the tunes in the publications. 
LTRF is abbreviation for Lietuvių tautosakos rankraštyno 
fonoteka (Audiorecords at the Archives of Lithuanian folk-
lore, Institute of Lithuanian Literature and Folklore). 

F1: Mikas Marciukas (Papilys, Biržai county) and 
Kazys Latvėnas (Vieščiūnai, Vabalninkas township, 
Biržai county). Records of 1935. 

F2: Juozas Gudėnas (55, Bajorai, Salakas township, 
Zarasai county; b. in Bajorai, Daugėliškis township, 
Švenčionys county). Records of 1939. 

F3: Kostantas Lukoševičius (24, Guobiniai, 
Leipalingis township, Seinai county). Records of 1935. 

F4: Julius Kapka (72, Makniūnai, Nemunaitis town-
ship, Alytus county). Records of 1935. 

F5: Juozas Radzevičius (70, Žarsta, Klebiškis town-
ship, Marijampolė county). Records of 1936. 

F6: Jurgis Byla (71, Vizgirdai, Paežeriai township, 
Vilkaviškis county). Records of 1937. 

F7: Jurgis Gudynas (75, Veselava, Javaravas township, 
Marijampolė county). Records of 1937. 

T1: Pandėlio polka [The Pandėlys Polka]. LTRF disc 
60(2) [57]. 

T2: Kuzma (Tuina) polka. LTRF disc 60(4) [75]. 
T3: Ožiukas [The Kid Goat]. LTRF disc 1169(3) [70]. 
T4: Rātasai [The Round]. LTRF disc 1170(2) [71]. 
T5: Cikano polka [The Cikanas Polka]. LTRF disc 

115(9) [40]. 
T6: Zantos polka [The Zanta Polka]. LTRF disc 

115(10) [6]. 
T7: Šilinė polka [The Pine-Wood Polka]. LTRF disc 

305(1) [36]. 
T8: Polka. LTRF disc 443(1) [12]. 
T9: Polka. LTRF disc 443(2) [14]. 
T10: Mazurpolkė „Aukštoji“ [Mazurpolka ‘The High-

est’]. LTRF disc 443(6) [15]. 
T11: Polka. LTRF disc 651(1) [22]. 
T12: Vestuvinis maršas išleidžiant [Wedding March at 

Parting]. LTRF disc 652(2) [26]. 
T13: Polka. LTRF disc 645(1) [23]. 
T14: Polka. LTRF disc 644(4) [38]. 
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1. INTRODUCTION 

The collection and publication of tunes in Irish traditional 
music since the 17th century has been well documented; 
however, one facet of Irish traditional music has been 
largely unexplored by ethnomusicologists as an apparent 
result of the collection process, namely the plausibility of 
microinterval modality in Irish traditional music. Very 
little can be inferred about this from the written history of 
Irish music up to the 20th century, but certain glimpses 
into this ‘lost music’ are provided by some of the first re-
cordings of Irish music in the early part of the 20th centu-
ry, as well as a text by Rev. Richard Henebry. In these 
sources, it is apparent that the use of non-tempered scales 
is not as uncommon as is currently thought. This oral pa-
per presents preliminary evidence to support some of the-
se earlier findings through the examination of a small se-
lection of archival recordings using basic empirical meth-
ods to analyse microintervallic content. 

2.  METHODOLOGY 

Reccordings of singer Brigid Tunney, fiddler Bobby 
Casey and piper Patsy Touhey are selected initially 
through aural determination of microintervallic content. 
The pitch content of the selcted recordings is then 
analysed using the software Praat to create melographs 
which can then be used to both visually determine 
microintervals and the precise pitch involved. In 
addition, the data obtained can be used to create ‘pitch-
centre plots’ that demonstrate the variation of specific 
pitches in a particular melody. From these, preliminary 
evidence for the systematic usage of microintervals in 
traditioanl performance can be gathered. The preliminary 
results suggest a reappraisal of the melodic content of 
Irish traditional music and the necessity of a wider 
survey, as well as providing reasons for the long-
standing tradition of monophony in early Irish music. 

3. RESULTS 

This cursory study reveals that in each of the tracks ex-
amined there is a prevalent variance in the intonation of 
fourths and sevenths in the scale, which were frequently 
found a quartertone away from their equally tempered 
equivalents. Other scale degrees showed smaller variation 

by comparison, although a quarter-flattened third is prev-
alent in Casey’s performance (remarkably similar to a 
‘neutral’ scale). These observations tie in with Henebry’s 
frequent reference to the ‘advanced’ fourths and sevenths 
and lends some weight to his classification of ‘Irish 
scales’. However, there is insufficient evidence here to 
proffer any agreement with Henebry’s assertion that the 
position of these notes varies depending on the direction 
of the melody (ascent vs. descent). 

4. DISCUSSION 

The question remains as to why this variation is present at 
all. It would be very easy to proffer an answer along the 
lines of Henebry in saying that their very existence is rea-
son enough in itself. I tentatively suggest, in agreement 
with the eminent Irish music scholar Breandán Breath-
nach, that the answer lies in the question of ‘gapped 
scales’. Two of the pieces examined here show a clear 
usage of a pentatonic scale, but not in the usual sense: 
(thinking in terms of G as prime) The Wee Weaver and 
The Munster Gimlet are based on the notes G-A-C-D-F, 
with C and F being variable between quarter-sharp and 
fully sharp. The usual pentatonic scale, G-A-B-D-E, lacks 
these variable notes and it is interesting to note that the 
quartertones fall precisely between the two ‘gaps’ in this 
scale. This may support the primordialism of the latter 
scale in Irish music, with the more recent addition of var-
iable fourth and sevenths exploratively creating new 
means of expression. Alternatively, there may be some 
other grounding for the preference of the G-A-C-D-F 
pentatonic scale over G-A-B-D-E in older Irish music. 
Further examination of this is beyond the scope of this 
discussion. One explanation for the variance of thirds and 
sevenths could lie in the possibility of ‘hybrid modes’. 

5. CONCLUSION 

The results discussed in this paper are significant in both 
the preservation of Irish musical heritage and cultivation 
of a new direction in Irish contemporary music, tackling 
head-on the divide between contemporary Irish art music 
and traditional music. This paper discusses briefly the 
schism between the two main branches in Irish contem-
porary music and how the possibility of microinterval 
modality in Irish traditional music can act as a bridge be-
tween them. 
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ABSTRACT 
The aim of computer-aided musical orchestration (CAMO) is to 

find a combination of musical instrument sounds that approxi-

mates a target sound or a desired timbral quality. The difficulty 

arises from the complexity of timbre perception and the combi-

natorial explosion of all possible instrument mixtures. The state 

of the art uses Genetic algorithms (GAs) to explore the vast 

space of possible instrument combinations with a fitness func-

tion that encodes timbral similarity between the candidate in-

strument combinations and the target sound. However, GAs 

tend to lose diversity during the search, resulting in only one 

orchestration. In this work, we propose to use an artificial im-

mune system (AIS) called opt-aiNet to search for candidate or-

chestrations because opt-aiNet returns multiple orchestrations 

that are all similar to the target yet different from one another. 

Diversity results in the ability to provide the composer with 

multiple choices when orchestrating a sound instead of search-

ing for one solution constrained by choices defined a priori. 

Therefore, diversity can expand the creative possibilities of 

CAMO beyond what the composer initially imagined. 

1. INTRODUCTION 

Orchestration refers to composing music for an orchestra 

(Kendall 1993). Initially, orchestration was simply the 

assignment of instruments to pre-composed parts of the 

score, which was dictated largely by availability of re-

sources such as the number and type of instruments avail-

able (Handelman 2012, Kendall 1993). Later on, com-

posers started regarding orchestration as an integral part 

of the compositional process whereby the musical ideas 

themselves are expressed (Rose 2009). Compositional 

experimentation in orchestration arises from the increas-

ing tendency to specify instrument combinations to 

achieve desired effects, resulting in the contemporary use 

of timbral combinations (McAdams 1995, Rose 2009, 

Abreu 2016). The development of computational tools 

that aid the composer in exploring the virtually infinite 

possibilities resulting from the combinations of musical 

instruments gave rise to computer-aided musical orches-

tration (CAMO) (Carpentier 2006,2007,2010a,b, Hum-

mel 2005, Psenicka 2003, Rose 2009). Most of these 

tools rely on searching for combinations of musical in-

strument sounds from pre-recorded datasets to approxi-

mate a given target sound. Early works (Hummel 2005, 

Psenicka 2003, Rose 2009) resorted to spectral analysis 

followed by subtractive spectral matching. 

To overcome the drawbacks of spectral matching, Car-

pentier and collaborators (Carpentier 2006,2007,2010a,b, 

Tardieu 2007) search for a combination of musical in-

strument sounds whose timbral features best match those 

of the target sound. This approach requires a model of 

timbre perception to describe the timbre of isolated 

sounds, a method to estimate the timbral result of an in-

strument combination, and a measure of timbre similarity 

to compare the combinations and the target. Multidimen-

sional scaling (MDS) of perceptual dissimilarity ratings 

(McAdams 1995, Caclin 2005) provides a set of auditory 

correlates of timbre perception that are widely used to 

model timbre perception of isolated musical instrument 

sounds. MDS spaces are obtained by equating distance 

measures to timbral (dis)similarity ratings. 

Preliminary work (Abreu 2016) used an artificial im-

mune system (AIS) called opt-aiNet (de Castro 2002) to 

search for multiple combinations of musical instrument 

sounds whose timbral features match those of the target 

sound. Inspired by immunological principles, opt-aiNet 

returns multiple good quality solutions in parallel while 

preserving diversity. The intrinsic property of mainte-

nance of diversity allows opt-aiNet to return all the opti-

ma (global and local) of the fitness function being opti-

mized upon convergence, as shown in Fig.1 b). Fig.1 il-

lustrates a two-dimensional fitness function to be opti-

mized by finding the peaks (i.e., points where the func-

tion has maximum amplitude). Fig.1 a) illustrates the 

mono-modal optimization property of GAs, which typi-

cally converge to a unique solution represented as a black 

dot on a peak. In turn, Fig. 1 b) illustrates the multi-

modal ability of the AIS opt-aiNet, capable of returning 

all optima of the function within the region of interest. 

The application of opt-aiNet in CAMO gave rise to 

Immune Orchestra (Abreu 2016). The preliminary results 

suggest that the property of maintenance of diversity 

translates as orchestrations that are all similar to the target 

yet different from one another. Thus Immune Orchestra 

can provide the composer with multiple choices when 

orchestrating a sound instead of searching for one solu-

tion constrained by choices defined a priori (Carpentier 

2010a). Consequently, Immune Orchestra has the poten-

tial to expand the creative possibilities of CAMO beyond 

what the composer initially imagined. 

We are currently improving Immune Orchestra to en-

sure maximum diversity of the proposed orchestrations 

both objectively and subjectively. We will present the re-

sults, compare with the state of the art, and discuss poten-

tial improvements for future work. 
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                 a) Standard Genetic Algorithm (GA)                        b) Artificial Immune System (AIS) 

Fig.1: Comparison between mono-modal (GA) and multi-modal (AIS) optimization. The AIS used is opt-aiNet. 
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ABSTRACT 
 

The Mozarabic rite provided the dominant context for Christian 

worship on the Iberian Peninsula and Southern France from the 

sixth till eleventh centuries. Over 5,000 chants of the Mozarabic 

rite are preserved in neumatic contour notation. Since pitch-read-

able notation only became in use in the eleventh century and 

hardly any Mozarabic chant was found in such notation, scholars 

believe that most Mozarabic melodies are irretrievably lost. 

Based on similarities between the chant of Mozarabic and other 

rites, this paper presents a method for the computational compo-

sition of melodies agreeing in all detail with our knowledge of 

the early Mozarabic neumatic notation. We first describe how we 

came to look for such a method. Then we give a detailed descrip-

tion of the eight steps of the method. Finally, we propose objec-

tive criteria that supposedly are indicative for the authenticity of 

our compositions, we restate our goals, and refer to several sound 

examples on the internet. 

1. INTRODUCTION 

The study of medieval chant-repertoires is of great im-

portance for our understanding of the transition from pri-

marily oral musical cultures to the written and notated his-

tory of Western music. At least five medieval chant-reper-

toires (partially) survive in pitch readable notation from 

the eleventh and twelfth centuries: Gregorian, Milanese, 

Old-Roman, Beneventan and Mozarabic chant. Their his-

tories are closely related and go back to times long before 

the eleventh and twelfth centuries (Hiley, 1993; Fernández 

de la Cuesta, 2013). Two of these repertoires are also pre-

served in tenth-century neumatic notation: Gregorian and 

Mozarabic chant (see Table 1). The Mozarabic rite and its 

chant were officially abolished in 1085 and replaced by the 

Roman rite with its Gregorian chant. In Toledo, however, 

Mozarabic chant survived orally until it was partly notated 

in sixteenth century mensural notation. In these pitch-spe-

cific notations hardly any correspondence can be found 

with the early neumatic notation.  

 

 

Figure 1. Beginning of the introit Puer natus, CH-SGs 

339, St. Gall, Switzerland, 980-1000 (initial P omitted) 

 

Figure 2. Beginning of the introit Puer natus, A-Gu 807, 

St. Florian, Austria, XII c. (initial P omitted). The two 

horizontal lines respectively represent the f (lower line) 

and the c' (upper line).  

 

 Neumatic notation was meant as a memory aid. It con-

sists of a sequence of symbols written above the text, indi-

cating the contour of the melody. For example, the first 

neume in Figure 1 refers to an ascending interval of two 

notes. The second neume represents a single note. The 

 neumatic notation correspondence pitch notation database 

 century    chants  century    chants C 

     

GRE: Gregorian chant X-XI         4,000 > 99 % XI-XII    10,000 281 

MIL: Milanese chant - - XI-XII      3,000 167 

ROM: Old Roman chant - - XI-XII      3,000 141 

BEN: Beneventan chant - - XI-XII         200 51 

MOZ: Mozarabic chant X-XI         5,000 < 1 % XI-XVI       500 149 

     

             Table 1. Estimation of the number of chants in five traditions, the correspondence between the two types of 

notation, and the number of chants in our database C. 

 

Proceedings of the 7th International Workshop on Folk Music Analysis, 14-16 June 2017, Málaga (SPAIN) 
ISBN: 978-84-697-2303-6

60



  

 

third neume represents an ascending interval followed by 

a descending interval. In the early sources, the exact sizes 

of the intervals are not indicated. The historic performer 

knew the melody by heart.1 For us, the only way to obtain 

knowledge of the historical melodies is by consulting 

sources from later date that contain pitch-specific notation 

for corresponding chants. We can find these corresponding 

chants by comparing liturgical assignment (feast and func-

tion) and texts of the chants. For example, in Gregorian 

chant, the mass of Christmas Day starts with the introit 

Puer natus. Comparing unpitched tenth-century neumes of 

this chant (see Figure 1) with corresponding twelfth-cen-

tury pitches (see Figure 2), we can see a perfect corre-

spondence in musical detail. Both introits (most likely) re-

fer to the same melody (gd'-d' d'e'd'-c' c'c'c' 

d'c'e'd', on Pu-er na-tus est no-).  

 However, virtually all Mozarabic chants preserved in 

early, unpitched neumatic notation do not correspond to 

their pitch-readable counterparts, if these exist at all. Fig-

ure 3 shows the Mozarabic Parvulus natus, the sacrificium 

(offertory) for the mass of Christmas Day. Just to mention 

one striking difference, we can observe different numbers 

of notes in the two versions. The neume above the first syl-

lable of Parbulus in León indicates a single note. Above 

the second syllable we see three notes: a single note is fol-

lowed by a clivis, an ascending note followed by a de-

scending note. Conform Rojo and Prado (1929) and Gon-

zález-Barrionuevo (2015) León thus shows 1-3-6, 1-2, 4 

and 13-2 notes on the first four words, while Toledo shows 

1-1-1, 3-3, 2 and 4-9.  

 Because of this lack of correspondence, the vast ma-

jority of Mozarabic melodies are unknown. Therefore, un-

til recently, Mozarabic chant did not receive much schol-

arly attention. The contrast with Gregorian chant is re-

flected in the correspondence figures in Table 1. The avail-

ability of melodies would greatly improve our access to the 

lost tradition. As the exact reconstruction of the musical 

past obviously seems not achievable, in this paper we aim 

to construct historically informed, singable melodies that 

correspond with the neumatic contour notation of the early 

                                                           
1 In fact, the historic performer did not perform from notation at all. In 
the best case notation was only used as a reference (see Hiley, 1993). 

manuscripts. This, at least, will render the repertoire per-

formable for contemporary ensembles. 

 Our first attempt was to compose chants manually our-

selves. We put the results of this to the test by providing 

them to the ensemble Gregoriana Amsterdam during a reg-

ular rehearsal, without telling the source of the chants. The 

singers, however, did not accept the chants. They even 

guessed themselves that these were new compositions be-

fore they were informed about it. The melodies apparently 

disagreed too much from the styles familiar to them.  

 Next, we asked several professional composers to 

make melodies that agree with the early contour notations, 

in order to rehearse and perform these. One of them made 

several different compositions in different modes for sev-

eral chants. We rehearsed and performed a selection of 

these (Swaan, 2012). A second composer explored her art-

istry in microtonal directions (Driessen, 2013). In all cases, 

however, the chants the composers produced, stylistically 

seemed not to correspond to our knowledge of the five tra-

ditional styles of Table 1. We became convinced that in-

viting modern composers was not the best option to recre-

ate something of the lost Mozarabic music.  

 We set out to design a more objective method to find 

pitches that match the neumatic contour notation. We 

know that the five pitch-readable chant repertoires are in-

terrelated (Hiley, 1993; Levy, 1998). Therefore, it is plau-

sible to employ the melodic material from these traditions 

for our purpose. Our current approach is to automatically 

search a database of digitized chants from pitch-readable 

sources in order to retrieve a melody that matches the neu-

matic contour notation of a lost melody as much as possi-

ble. This procedure renders the lost melodies singable 

again using stylistically related historic melodic material.  

 This paper presents our method. We first discuss the 

representations we use. Then, the central steps of the 

method are presented. We propose a scoring mechanism to 

evalutate the authenticity of the retrieved melody and con-

clude with some examples performed by Gregoriana Am-

sterdam on YouTube.  

              

Figure 3. Beginning of Parvulus natus, top, E-L 8, León, early X c; bottom, E-Tc Cantoral I, Toledo, early XVI c. 
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2. METHOD 

The method we propose consists of the following eight 

steps: 

1. Represent the neumes as sequence of contour let-

ters t; 

2. Construct a database C with pitched melodies; 

3. Divide t into phrases; 

4. Find a matching source melody s for t in C; 

5. Make a raw composition r0 based on s; 

6. Adjust for recurring formulas; 

7. Adjust for singability; 

8. Transcribe and perform. 

These steps will be explained in detail in the following 

subsections. 

2.1 Step 1: Represent the Neumes as Contour Letters 

To represent the melodic contour information of the tenth-

century neumatic notation, we designed a representation 

with an alphabet of six symbols, {h, l, e, o, b, p}, each 

representing a note of the (lost) melody. This representa-

tion can be considered an extension of the Parsons code 

(Parsons, 1975; Randel, 2001; Maessen, 2015). We use the 

letter h for a note higher than the preceding note, the l for 

a note lower than the preceding note and the e for notes of 

equal pitch. The letter o represents the first note of each 

chant, and also all notes for which the relative height with 

respect to the previous note is not determinable. In princi-

ple, this is the case for the first note of each neume. This 

would imply many o’s in the transcriptions. This is unde-

sirable since in order to represent as much contour infor-

mation as possible in the transcription, the number of o’s 

should be as low as possible. In many cases, however, the 

vertical position of a neume provides some indication of 

the pitch height with respect to the previous neume, ena-

bling us to avoid the use of an o for the first note of the 

                                                           
2 Volpiano font has been developed by David Hiley and Fabian Weber 
at the Institut für Musikwissenschaft of Regensburg University, it is 

neume. To cover some remaining uncertainty, we also de-

fined the letters b and p, respectively representing notes 

higher or equal, and lower or equal. 

Apart from these letters, dashes and numerals are used 

for interpunction: 1 indicates the beginning of the chant, 5 

the end, 4 the end of a main part of the melody and 3 a 

division within main parts. Three consecutive dashes, --

-, indicate the beginning of a new word; two dashes, --, 

a new syllable and one dash, -, a new neumatic group. 

We designate the lost melody represented by the tenth-

century neumes with x. The transcription into contour rep-

resentation we call t.  

2.2 Step 2: Construct a Database with Pitched Melo-

dies 

Since eleventh and twelfth-century manuscripts do not 

provide information about rhythm and meter, but only 

about pitch, embellishments and interpunction, we are able 

to use the encoding developed for the music font Volpiano2 

to represent the melodies of pitch-readable chants in the 

database. In Volpiano font the characters 8, 9, a, b, c till o, 

p, q, r, s, represent the pitches F, G, A, B, c' till g'', a'', b'', 

c''', d''' on a five-line staff, the i being the flat sign on the 

third line. Numerals and dashes represent the interpunction 

as described in Section 2.1. For example, if we typeset the 

string “1---h-j-k-” in Volpiano font, we obtain 1---h-j-k-. 
We designate the database with C, and the i-th chant in the 

database with ci.  

 Currently C is a subset of all chants referred to in Ta-

ble 1 (see Table 1). For each of the five traditions all chants 

of four specific genres (tracts, cantus, benedictiones and 

offertories) are included. These belong to the longest 

chants of these traditions. From each tradition, several 

other chants are included as well, making C a collection of 

nearly 800 chants, good for almost 250,000 notes. 

downloadable from: http://www.uni-regensburg.de/Fakultae-
ten/phil_Fak_I/Musikwissenschaft/cantus/  

               

Figure 4. Beginning of the responsory Manum suam aperuit for St. Martin; top: the neumes of León, early X c.; be-

tween square brackets the transcription to contour letters; bottom: the final composition with León transcription. 
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2.3 Step 3: Divide t into Phrases 

It is of course possible for the database to contain a melody 

ci that fully corresponds with the contour t, and thus might 

be the lost melody x, but we consider this very unlikely. 

Nevertheless, our method is designed in such a way that if 

the lost melody is included in the database, we will find it. 

In any case, we do expect to be able to find a ci that pro-

vides melodic material that sufficiently corresponds with 

t. In most cases, this will not be a correspondence between 

the complete contour t and ci, but parts of ci may corre-

spond to parts of t. Therefore, our strategy is to manually 

divide t into melodic phrases. In our contour representa-

tion, these phrases are represented by square brackets (see 

Figure 4 for an example). We designate the j-th phrase in t 

with tj. 

 To perform the division into phrases, we need an indi-

cation of the optimal phrase length. Phrases of one note 

would match to every melody of equal or greater length. 

Phrases of the full length of t would, in most cases, match 

no melody in C at all. Experimentally we found the best 

results for phrases between 9 and 18 notes, with the opti-

mum around 12. We perform the segmentation into 

phrases by hand, as much as possible in accordance with 

the grammatical and musical syntax of x, as witnessed by 

the early neumatic notation. For different purposes the 

length of the phrases may be different (see Section 2.5). 

2.4 Step 4: Choose a Source Melody 

In our method, the final composition r (result) is based on 

a melody ci that is closest to x: the source melody s.  

 Given the specific features of the transcribed chant t, 

and knowing the repertoire, we could choose a source mel-

ody ci by hand from similar chants in related pitch-reada-

ble traditions GRE, MIL, ROM, BEN and MOZ (see Table 

1). The similarity would be based on liturgical assignment, 

text, genre, and structure. Sometimes we may also have 

information about mode or historic relations of the lost 

chant, in which case we could prefer a source chant in a 

specific mode from a specific tradition.  

 Instead of choosing a single source melody by hand, 

however, it is preferable to create a database C’ based on 

all these features – where C’ is a subset of C – and auto-

matically retrieve a suitable source melody s from C’. To 

this end, we computationally search matches for all 

phrases tj of t in the melodies of C’. We implemented a 

brute force string matching algorithm to perform this 

search. The algorithm finds exact matches for a given tj by 

comparing the sequence of contour letters in tj with the 

notes of the melody string ci at all possible positions in ci. 

To compare a contour letter in tj with a note in ci, the inter-

val that the note in ci makes with a previous note is used. 

In case of a skip (explained below), not the direct preceed-

ing note, but a more previous note is used. As a conse-

quence, we cannot use a representation of the melody in 

which each note is represented as the interval with the di-

rect preceeding note. This also prevents us from using a 

standard alignment algorithm on sequences of intervals. 

 The algorithm allows to skip a maximum of nskip notes 

of ci between each consecutive pair of matching notes in 

ci. nskip is a user-provided parameter of the algorithm. The 

higher nskip, the more likely we find a match for a phrase tj. 

However, for higher nskip, the execution time increases, as 

well as the possibility to obtain perceptually unexpected 

successions of notes (see Section 2.7). For larger data-

bases, nskip=0 or nskip=1 should be preferred. By using an 

exhaustive search rather than, for example, a string align-

ment approach, we are able to exactly control the maxi-

mum number of skipped notes. 

 The aim is to find the melody ci that has matches for 

as many phrases tj as possible, while each of these matches 

is as good as possible. To assess the quality of a phrase 

match, we introduce a numerical score based on two prop-

erties of the match: the total number of skipped notes and 

the position of the match within the full melody. 

 Figure 5 shows an example of a match mj for contour 

[olhollhohoh] in a database melody ci. Two notes of 

ci needed to be skipped for the contour tj to match the se-

quence of pitches. 

 For each phrase tj in t, we compute the scores Sskip and 

Spos. The score concerning skips is computed as 

 

𝑆𝑠𝑘𝑖𝑝 = 𝑚𝑎𝑥 (0, 1 −
𝑠𝑘𝑖𝑝𝑠

1
2

|𝑡𝑗|
) , 

 

where skips is the total number of skipped notes, and |𝑡𝑗| 

is the length of phrase tj from t. We include a factor ½ be-

cause we consider it undesirable to have more skips than 

half of the length of the phrase. In the example in Figure 

 ci  …   k  h  l  h  k  j  h  h  g  k  j  h  k  l  m  m  l  … 

 

 

mj         l  h  k  j  h     g  k  j     k  l  m 

 

 

tj      [  o  l  h  o  l     l  h  o     h  o  h  ]   

Figure 5. Example of a match mj for phrase tj in database melody ci. Two skips were needed to fit contour tj to the 

notes of ci. 

 

Proceedings of the 7th International Workshop on Folk Music Analysis, 14-16 June 2017, Málaga (SPAIN) 
ISBN: 978-84-697-2303-6

63



  

 

5, the total number of skips is 2 and the length of tj is 11, 

so the score Sskip is 0.64. 

The score for position, Spos, is computed as: 

 

𝑆𝑝𝑜𝑠 = 1 − |𝑝𝑜𝑠(𝑡𝑗) − 𝑝𝑜𝑠(𝑚𝑗)| , 

 

where pos(tj) is the position of the first note of tj relative to 

the full length of t, and pos(mj) is the position of the first 

note of mj relative to the full length of ci. pos(tj) and pos(mj) 

both are real numbers in [0,1], where 0 is the position of 

the first note and 1 the position of the last note. 

 We compute one score for the entire melody ci accord-

ing to 

 

𝑆 = 𝜆𝑆𝑝𝑜𝑠
̅̅ ̅̅ ̅ + (1 − 𝜆)𝑆𝑠𝑘𝑖𝑝

̅̅ ̅̅ ̅̅  , 

 

where 𝑆𝑝𝑜𝑠
̅̅ ̅̅ ̅ and 𝑆𝑠𝑘𝑖𝑝

̅̅ ̅̅ ̅̅  are averages over the phrases, and 𝜆 

is a regularization parameter that determines the relative 

weight of the scores. Experimentally, we found 𝜆 = 0.7 to 

be a good value. 

 A phrase tj might have more than one match in a data-

base melody ci. In that case, we obtain multiple scores for 

ci, one for each possible configuration of matching 

phrases. 

The scoring scheme is designed such that if the lost 

melody x is present in the database, we will find it, since 

in that case we will not need any skips, and the positions 

of the phrases will exactly correspond. 

The melody s, which will serve as the source melody, 

is the melody in the database that obtained the highest 

score S. 

2.5 Step 5: Make a Raw Composition 

Given the source melody s found in step 4, we make a raw 

composition r0 for t. This is the sequence of closest 

matches in s for the sequence of phrases in t. The proce-

dure to construct r0 is completely analogue to the proce-

dure to find s in step 4. The crucial difference is that we 

replace the database C with the single source melody s, 

such that we find matches for all phrases of t in s. In the 

case that we do not find a match for a phrase tj, we increase 

nskip, accepting longer skips. If necessary, we also can 

adapt the segmentation of t to obtain shorter or longer 

phrases. By following this procedure, we get a composi-

tion for the lost melody that is entirely based on the me-

lodic material from one other historic melody.  

2.6 Step 6: Adjust Formulas 

Many of the chants in neumatic notations will exhibit re-

curring patterns, formulas (intra-opus repeated segments) 

of between approximately 7 to 18 notes. As is the case in 

the five pitched traditions, it may be preferable to give spe-

cific formulas in all (or at least most) instances the same 

melodic content in our composition. To do so, we proceed 

                                                           
3 Accessible at: https://www.youtube.com/lelalilu  

as follows: we detect the formulas manually, we either 

manually pick a preferred pitch sequence (from r0), or we 

calculate the closest matching sequence (as in step 4) of tj 

in s, where tj is a transcription of the formula to contour 

letters, and substitute this for the preferred formulas. The 

resulting melody we designate with r1.  

2.7 Step 7: Correct for Singability 

Although steps 5 and 6 may seem to include some arbitrary 

decisions, the most subjective step is 7. It consists in sing-

ing r1 and deciding (if necessary) to adjust the melody in 

minor details, or, in some cases, even greater parts. For 

many melodies this is necessary, since some pitches of r1 

may be judged to be very uncharacteristic for the style, es-

pecially at beginning and end of phrases. It may be good 

to “normalize” these manually, in agreement with our 

knowledge of medieval style. For the same reason, it may 

also be good to transpose some phrases a second, a fourth 

or a fifth. The criterion for these adjustments, however, 

should be that a small change should generate a great im-

provement in the melody, thus producing the final compo-

sition r. The number of adjustments can be considered an 

indication for the quality of our composition. We judge ad-

justments above 5 % of the total number of notes to be-

come problematic. For those cases, we better start new cal-

culations with different phrase divisions, other source 

chants and/or other pitch sequences for formulas. The 36 

chants in Maessen (2016) have an average correction per-

centage of 3.95 for only first calculations. For the complete 

melody of Figure 4 we needed only 1 correction in 195 

notes (we lowered the final pitch from e to d).  

2.8 Step 8: Transcribe and Perform 

After completion of the final composition r the musical 

score must be produced to enable others to sing the chant. 

Since our database consists of chants represented in Vol-

piano font (see Section 2.2), our compositions are also in 

Volpiano font. Therefore, we can easily transform our 

compositions to printable scores. Copying the original 

neumes above the score (see Figure 4) has proven to be a 

good way to give directors and singers inspiration for the 

manner of performance, especially concerning duration of 

notes and embellishments. The influential semiological in-

terpretation of Gregorian neumatic notation (Cardine, 

1968; González-Barrionuevo, 2015) can be considered im-

portant for their interpretation. See the original neumatic 

notation running along with the performance of Example 

4 (and some other chants) by Gregoriana Amsterdam, up-

loaded to YouTube.3  

 

3. EVALUATION 

We do not claim lost melodies of the Mozarabic rite to sur-

vive in any number in pitch notation. We neither claim 
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they did not. All steps in our method are developed with 

the possibility in mind that if the lost melody x would be 

included in our database, our final composition r will rep-

resent it. Maessen (2015) gives some examples of the orig-

inal melody x found this way. Melodies very close to x may 

also be represented by r. However, although our method 

always finds a melody, not all possibly related melodies to 

x will be found. Many closely related melodies simply dis-

agree too much to be found with our method. For the mel-

odies we do find, several indications can be a sign that we 

are on the wrong track for recovering the lost melody. The 

more we have to shorten our phrases, increase nskip, or have 

to adjust notes to singability, the less likely our composi-

tion is related to the lost melody. 

 In order to make any claim on the relationship with the 

lost chant, we could have developed a rating system in 

which all these kinds of aspects for each composition were 

combined. We chose, however, not to proceed this way, 

because our main concern is not any authenticity claim. 

Our concern is the semi-automatic production of singable 

melodies agreeing in all detail with our knowledge of the 

early notation. We believe that we can only understand 

something of the deeper layers of the lost tradition through 

the singing of its chant. Even without any authenticity 

claim we can experience many aspects of the lost musical 

tradition through its singing. Notably, the way the texts in-

teract with the alternation of syllabic and melismatic pas-

sages, and the way recurring formulas interact with non-

formulaic passages.  

 Since our first compositions in 2014, we are working 

on the improvement of the method in order to come to bet-

ter melodic results. This paper presents the state of affairs 

in February 2017. An apparent weakness in our method 

still is the fact we do not use the interpunction encoded in 

Section 2.1. This information could make it possible to 

align not only single notes, but also, syllables, words and 

even sentences. There are many other problems we are still 

working on. We are also experimenting with generative 

probabilistic models and pattern detection algorithms. We 

do think, however, that our method, even in this stage, 

might be relevant for the comparison of other oral musical 

genres where rhythm and meter are not clearly prescribed 

in notation. Apart from Western and Eastern medieval li-

turgical music, we can think e.g. about troubadour songs. 

 Although it is not our main focus, and there is still a 

lot of work to be done, we can get some idea of the authen-

ticity of our compositions when we consider the score S 

we obtain in step 4 (see Section 2.4). A score of 1 would 

indicate a 100 % agreement of the phrases of contour tran-

scription t with our source melody s, i.e., no skips would 

be needed and the positions of the matches in s would ex-

actly agree to the positions of the phrases in t. In most cases 

(average and more complex chants) this would (most 

likely) mean that we would have found the lost melody x. 

                                                           
4 Maessen (2016) illustrates these conditions. 

Under specific conditions, scores greater than 0.7 could in-

dicate a close resemblance to the lost melody.4 Up till now 

we recomposed and performed over 100 Mozarabic chants 

of diverse nature for several occasions. Most scores we 

found are below 0.4, indicating that we did not find lost 

melodies. Our compositions, however, can be sung. Some 

people even think some of them are beautiful. In all cases, 

however, our compositions proof perfectly suitable for li-

turgical practice. Examples of complete compositions can 

be found on YouTube and in Maessen (2015 & 2016).  
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ABSTRACT

Music synthesis is one of the most essential features of mu-
sic notation software and applications aimed at navigating digital
music score libraries. Currently, the majority of music synthesis
tools are designed for Eurogenetic musics, and they are not able
to address the culture-specific aspects (such as tuning, intonation
and timbre) of many music cultures. In this paper, we focus on the
tuning dimension in musical score playback for Turkish Makam
Music (TMM). Based on existing computational tuning analysis
methodologies, we propose an automatic synthesis methodology,
which allows the user to listen to a music score synthesized ac-
cording to the tuning extracted from an audio recording. As a
proof-of-concept, we also present a desktop application, which
allows the users to listen to playback of TMM music scores ac-
cording to the theoretical temperament or a user specified refer-
ence recording. The playback of the synthesis using the tuning
extracted from the recordings may provide a better user expe-
rience, and it may be used to assist music education, enhance
music score editors and complement research in computational
musicology.

1. INTRODUCTION

A music score is a symbolic representation of a piece of
music that, apart from the note symbols, it contains other
information that helps put those symbols into proper con-
text. If the score is machine-readable, i.e. the elements
can be interpreted by a music notation software, the dif-
ferent musical elements can be edited and sonified. This
sonification can be done using a synthesis engine and with
it, the users get an approximate real-time aural feedback
on how the notated music would sound like if played by a
performer.

Currently, most of the music score synthesis tools ren-
der the audio devoid of the performance added expression.
It can be argued that this process provides an exemplary
rendering reflecting theoretical information. However, the
music scores of many music cultures do not explicitly in-
clude important information related to performance aspects
such as the timing, dynamics, tuning and temperament.
These characteristics are typically added by the performer,
by using his or her knowledge of the music, in the con-
text of the performance. Some aspects of the performance,
such as the tuning and temperament, may differ due to the
musical style, melodic context and aesthetic concerns. In
performance-driven music styles and cultures, the “theo-
retical“ rendering of a music score might be considered as

insufficient or flawed.
In parallel, the mainstream notation editors are currently

designed for Eurogenetic musics. While these editors pro-
vide a means to compose and edit music scores in Western
notation (and sometimes in other common notation formats
such as tablatures), the synthesis solutions they provide are
typically designed for 12 tone-equal-tempered (TET) tun-
ing system, and they have limited support to render inter-
mediate tones and mictotonal intervals. The wide use of
these technologies may negatively impact the music cre-
ation process by introducing a standardized interpretation
and it might even lead to loss of some variations in the ex-
pression and understanding of the music culture in the long
term (McPhail, 1981; Bozkurt, 2012).

For such cases, culture-specific information inferred
from music performances may significantly improve mu-
sic score synthesis by incorporating the flexibility inherent
in interpretation. In this study, we focus on the tuning and
temperament dimensions in music score synthesis, specif-
ically for the case of Turkish makam music (TMM). Turk-
ish makam music is a suitable example since performances
use diverse tunings and microtonal intervals, which vary
with respect to the makam (melodic structure), geograph-
ical region and artists. Based on an existing computa-
tional tuning analysis methodology, we propose an adap-
tive synthesis method, which allows the user to synthesize
the melody in a music score either according to a given
tuning system or according to the tuning extracted from
audio recordings. In addition, we have developed a proof-
of-concept desktop application for the navigation and play-
back of the music scores of TMM, which uses the adaptive
synthesis method we propose. To the best of our knowl-
edge, this paper presents the first work on performance-
driven synthesis and playback of TMM.

For reproducibility purposes, all relevant materials such
as musical examples, data and software are open and pub-
licly available via the companion page of the paper hosted
in the Compmusic Website. 1

The rest of the paper is structured as follows: Section
2 gives a brief information of TMM. Section 3 presents
an overview of the relevant commercial music synthesis
software and the academic studies. Section 4 explains the

1 http://compmusic.upf.edu/node/339

Proceedings of the 7th International Workshop on Folk Music Analysis, 14-16 June 2017, Málaga (SPAIN) 
ISBN: 978-84-697-2303-6

66



methodology that adapts the frequencies of the notes in a
machine readable music score to be synthesized and the
preparation of the tuning presets. Section 5 explains the
music score collection, the implementation of the method-
ology and the desktop software developed for discovering
the score collection. Section 6 wraps up the paper with a
brief discussion and conclusion.

2. TURKISH MAKAM MUSIC

Most of the melodic aspects of TMM can be explained
by the term makam. Each makam has a particular scale,
which gives the “lifeless” skeleton of the makam (Signell,
1986). Makams are modal structures (Powers, et al., 2013),
which gains its character through its melodic progression
(seyir in Turkish) (Tanrıkorur, 2011). Within the progres-
sion, the melodies typically revolve around an initial tone
(başlangıç or güçlü in Turkish) and a final tone (karar in
Turkish) (Ederer, 2011; Bozkurt et al., 2014).

Karar is typically used synonymous to tonic, and the
performance of a makam ends almost always on this note.
There is no definite reference frequency (e.g. A4 = 440Hz)
to tune the performance tonic. Musicians might choose to
perform the music in a number of different transpositions
(ahenk in Turkish), any of which might be favored over
others due to instrument/vocal range or aesthetic concerns
(Ederer, 2011).

There are several theories attempting to explain the ma-
kam practice (Arel, 1968; Karadeniz, 1984; Özkan, 2006;
Yarman, 2008). Among these, Arel-Ezgi-Uzdilek (AEU)
theory (Arel, 1968) is the mainstream theory. AEU the-
ory is based on Pythagorean tuning (Tura, 1988). It also
presents an approximation for intervals by the use of Holde-
rian comma (Hc) 2 (Ederer, 2011), which simplifies the
theory via use of discrete intervals instead of frequency ra-
tios. “Comma” (koma in Turkish) is part of daily lexicon
of musicians and often used in education to specify inter-
vals in makam scales. Some basic intervals used in AEU
theory are listed in Table 1 (with sizes specified in commas
on the last column)

Since early 20
th

century, a score representation extend-
ing the traditional Western music notation has been used as
a complement to the oral practice (Popescu-Judetz, 1996).
The extended Western notation typically follows the rules
of AEU theory. Table 2 lists the accidental symbols spe-
cific to TMM used in this notation.

The music scores tend to notate simple melodic lines
and the musicians follow the scores of the compositions as
a reference. Nevertheless, they extend the notated “musi-
cal idea” considerably during the performance by adding
non-notated embellishments, inserting/repeating/omitting
notes, altering timing, and changing the tuning and tem-
perament. The temperament of some intervals in a perfor-
mance might differ from the theoretical (AEU) intervals as
much as a semi-tone (Signell, 1986).

2 i.e. 1 Hc = 1200
53

≈ 22.64 cents

Name Flat Sharp Hc
Koma 1
Bakiye 4
Küçük mücennep 5
Büyük mücennep 8

Table 1: The accidental symbols defined in extended West-
ern notation used in TMM, their theoretical intervals in Hc
according to the AEU theory.

3. BACKGROUND

Many commercial music notation software tools such as
Sibelius 3 , Finale 4 and MuseScore 5 support engraving
and editing the accidentals used in Turkish makam music.
However, they provide no straightforward or out-of-the-
box solution for microtonal synthesis. For example, Mus-
eScore only supports synthesis of 24 tone-equal-temperament
system, which is not sufficient to represent the the intervals
in either TMM practice or theory.

Mus2 6 is a music notation software specifically de-
signed for the compositions including microtonal content.
It includes a synthesis tool that allows users to playback
music scores in different microtonal tuning systems such as
just intonation. In addition, Mus2 allows the users to mod-
ify the intervals manually. Nevertheless, manually spec-
ifying the intervals could be tedious. In addition, the pro-
cess may not be straightforward for many users, which do
not have a sufficient musical, theoretical or mathematical
background.

There exists several studies in literature for automatic
tuning analysis of TMM (Bozkurt, 2008; Gedik & Bozkurt,
2010) and Indian art musics (Serrà et al., 2011; Koduri
et al., 2014). These studies are mainly based on pitch
histogram analysis. Bozkurt et al. (2009) analyzed the
recordings of masters in 9 commonly performed makams
by computing a pitch histogram from each recording and
then detecting the peaks of histograms. Considering each
peak as one of the performed scale degrees, they compared
the identified scale degrees with the theoretical ones de-
fined in several theoretical frameworks. The comparison
showed that the current music theories are not able to ex-
plain the intervallic relations observed in the performance
practice well.

Later, Bozkurt (2012) proposed an automatic tuner for
TMM. In the tuner, the user can specify the makam and in-
put an audio recording in the same makam. Then, the tun-
ing is extracted from the audio recording using the pitch
histogram analysis method described above. The tuning
information is then provided the user interactively, while
she/he is tuning an instrument. Similarly, Şentürk et al.
(2012) has incorporated the same pitch histogram based
tuning analysis methodology into an audio-score alignment
methodology proposed for TMM. In this method, the tun-
ing of the audio recording is extracted as a preprocessing

3 http://www.avid.com/sibelius
4 http://www.finalemusic.com/
5 https://musescore.org/
6 https://www.mus2.com.tr/en/
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Figure 1: The flow diagram of the adaptive tuning method-
ology

step prior to the alignment step. Next, it is used (instead of
the theoretical temperament) to generate a synthetic pitch
track from the relevant music score. This step minimizes
the temperament differences between the audio predomi-
nant melody and the synthetic pitch track, and therefore a
smaller cost is emitted by the alignment process.

4. METHODOLOGY

The proposed system differs from existing synthesizers by
allowing the user to supply a reference recording (for tem-
perament) from which the intervals may be learned auto-
matically. When a reference recording is not available, our
method maps the note symbols according to the intervals
described in the music theory with respect to the user pro-
vided tonic frequency. If the user provides a reference au-
dio recording, our method first extracts the predominant
melody from the audio recording. Next, it computes a pitch
distribution from the predominant melody and identifies
the frequency of tonic note in the performance. By apply-
ing peak detection to the pitch distribution, our method ob-
tains the stable frequencies performed in the audio record-
ing. Then, the stable pitches are mapped to the note sym-
bols in the music score by taking the identified tonic fre-
quency as the reference. Finally, synthesis is performed
by using the Karplus-Strong string synthesis method. The
flow diagram of the adaptive tuning method is shown in
Figure 1. 7

4.1 Predominant Melody Extraction

To identify the tuning, the method first extracts the pre-
dominant melody of the given audio recording. We use the
methodology proposed in (Atlı et al., 2014). 8 It is a vari-
ant of the methodology proposed in (Salamon & Gómez,
2012), which is optimized for TMM. Then, we apply a
post-filter 9 proposed in (Bozkurt, 2008) on the estimated
predominant melody. The filter corrects the octave errors.
It also removes the noisy regions, short pitch chunks and
extreme valued pitch estimations of the extracted predom-
inant melody.

7 The implementation of our methodology is openly available at
https://github.com/hsercanatli/symbtrsynthesis.

8 The implementation is available at https://github.com/
sertansenturk/predominantmelodymakam.

9 The implementation is available at https://github.com/
hsercanatli/pitchfilter.

4.2 Pitch Distribution Computation

Next, we compute a pitch distribution (PD) (Chordia &
Şentürk, 2013) from the extracted predominant melodies
(Figure 2). The PD shows the relative occurrence of the
frequencies in the extracted predominant melody. 10 We
use the parameters described for pitch distribution extrac-
tion in (Şentürk, 2016, Section 5.5) as follows: The bin
size of the distribution is set as 7.5 cents ≈ 1/3 Hc re-
sulting in a resolution of 160 bins per octave (Bozkurt,
2008). We use kernel density estimation and select the ker-
nel as normal distribution with a standard deviation of 7.5.
The width of the kernel is selected as 5 standard devia-
tions peak-to-tail (where the normal distribution is greatly
diminished) to reduce computational complexity.

4.3 Tonic Identification

In parallel, we identify the tonic frequency of the perfor-
mance using the methodology proposed by Atlı et al. (2015).
The method identifies the frequency of the last performed
note, which is almost always the tonic of the performance
(Section 2). The method is reported to give highly accurate
results, i.e. ∼ 89% in (Atlı et al., 2015).

4.4 Tuning Analysis and Adaptation

We detect the peaks in the PD using the peak detection
method explained in (Smith III & Serra, 1987). 11 The
peaks could be considered as the set of stable pitches per-
formed in the audio recording (Bozkurt et al., 2009). The
stable pitches are converted to scale degrees in cent scale
by taking the identified tonic frequency as the reference
using the formula:

ci = 1200 log2(fi/t) (1)

where fi is the frequency of a stable pitch in Hz, t is the
identified tonic frequency and ci is the scale degree of the
stable pitch in cents.

In parallel, the note symbols in the scale of the makam 12

is inferred from the key signature of the makam 13 and ex-
tended to ± two octaves. The note symbols are initially
mapped to the theoretical temperaments (scale degrees in
cents) according to the AEU theory (e.g. if the tonic sym-
bol is G4, the scale degree of A4 is 9 Hc ≈ 203.8 cents).

Next, the performed scale degrees are matched with the
theoretical scale degrees using a threshold of 50 cents (close
to 2.5 Hc, which is reported as an optimal by (Bozkurt
et al., 2009)). If a performed scale degree is close to more
than one theoretical scale degree (or vice versa), we only
match the closest pair. If there are no matches for a the-
oretical scale degree, we keep the theoretical value. As
a trivial addition to (Bozkurt et al., 2009), we re-map the

10 We use the implementation presented in (Karakurt et al., 2016):
https://github.com/altugkarakurt/morty.

11 The implementation is available in Essentia (Bogdanov et al., 2013):
http://essentia.upf.edu/.

12 The makam is known from the music score (Section 4.5).
13 Available at https://github.com/miracatici/

notemodel/blob/v1.2.1/notemodel/data/makam_
extended.json.
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Figure 2: The tuning extracted from a recording in Hüseyni makam, performed by Tanburi Cemil Bey.

theoretical scale degrees to the note symbols and obtain the
< note symbol - stable pitch > pairs. 14

Figure 2 15 shows an example tuning analysis applied
on a historical recording in Hüseyni makam performed by
Tanburi Cemil Bey. 16 The frequency of each stable note
is shown on the x-axis. The vertical dashed lines indicate
the frequencies of the notes according to the theoretical
intervals. The matched note symbol and the deviation from
the theoretical scale degree of each stable pitch is displayed
right next to the corresponding peak on the PD. It can be
observed that the some of the notes - esp. çargah (C5) and
hüseyni (E5) notes - substantially deviate from the AEU
theory.

4.5 Score Synthesis

From the machine-readable music score, we read the note
sequence, nominal tempo, makam and tonic symbol (last
note in the sequence). The note symbols are converted to
a stable pitches, by referring to the < note symbol - stable
pitch > pairs obtained from tuning analysis. In parallel,
the symbolic note durations are converted to seconds by
referring to the nominal tempo. Next, we generate a pitch-
track from the note sequence in the score by sampling the
mapped stable pitches relative to the their duration in sec-
onds at a frame rate of 44100 Hz and then concatenating
all samples (Şentürk et al., 2012). The score pitch-track
is synthesized using the Karplus-Strong string synthesis
(Jaffe & Smith, 1983). 17

In addition, we mark the sample index of each note on-
set in the score pitch-track to later use to synchronize the
music score visualization during playback in our desktop
application (Section 5.4).

5. APPLICATION

As a proof-of-concept, we have developed a desktop ap-
plication 18 , for the navigation and playback of the music

14 The implementation is available at https://github.com/
miracatici/notemodel.

15 The Figure and the explanation is reproduced from (Şentürk, 2016,
Section 5.9).

16 https://musicbrainz.org/recording/
8b8d697b-cad9-446e-ad19-5e85a36aa253

17 We modified the implementation of the Karplus-Strong model in the
PySynth library: https://github.com/mdoege/PySynth.

18 https://github.com/MTG/dunya-desktop/tree/
adaptive-synthesis

scores of TMM. In this section, we showcase the applica-
tion (Section 5.4) and discuss how it fits into the Dunya
ecosystem, which comprises all the music corpora and re-
lated software tools that have been developed as part of
the CompMusic project. In specific, we describe the music
score collection (Section 5.1), the tuning presents extracted
from audio recordings (Section 5.2), and the data process-
ing and storage platform hosted on web (Section 5.3).

5.1 Music Scores

In this study, we use the music scores in the SymbTr score
collection (Karaosmanoğlu, 2012). 19 SymbTr is currently
the most representative open-source machine-readable mu-
sic score collection of TMM (Uyar et al., 2014). Specifi-
cally, we use the scores in MusicXML format. This format
is preferred, because it is commonly used in many mu-
sic notation and engraving software. The scores in Mu-
sicXML format does not only contain the notes, but also
other relevant information such as the sections, tempo, com-
poser, makam and form of the related musical piece. We
use some of this information to search the scores in the
desktop application (Section 5.4).

To render the music scores during playback (Section
5.4), we first convert the scores in MusicXML format to
LilyPond and then to SVGs. 20 Each note element in the
SVG score contains the note indices in the MusicXML
score.

5.2 Tuning Presets

Using the methodology described in Section 4, we extract-
ed the tuning from 10 “good-quality” recordings as presets
for each of the Hicaz, Nihavent, Uşşak, Rast and Hüzzam
makams (i.e. 50 recordings in total). 21 These are the
most commonly represented makams in the SymbTr col-
lection, and they constitute more than 25% of the music
scores in the SymbTr collection (Şentürk, 2016, Table 3.2).
The recordings are selected from the CompMusic Turkish
makam music audio collection (Uyar et al., 2014), which is

19 The SymbTr collection is openly available online: https://
github.com/MTG/SymbTr.

20 The score conversion code is openly available at https:
//github.com/sertansenturk/tomato/blob/v0.9.1/
tomato/symbolic/scoreconverter.py.

21 The recording metadata and the relevant features are stored in GitHub
for reproducibility purposes: https://github.com/MTG/otmm_
tuning_intonation_dataset/tree/atli2017synthesis.
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currently the most representative audio collection of TMM,
available for computational research.

We have synthesized 1222 scores according to the pre-
sets (in total 12220 audio synthesis) and all the 2200 scores
with the theoretical tuning.

5.3 Dunya and Dunya-web

Dunya is developed with Django framework to store the
data and execute the analysis algorithms developed within
the CompMusic Project. 22 The audio recordings, music
scores and relevant metadata are stored in a PostgreSQL
database. 23 Its possible to manage information about the
stored data and submit analysis tasks on the data from the
administration panel. The output of each analysis is also
stored in the database. The data can be accessed from the
Dunya REST API. We have also developed a Python wrap-
per, called pycompmusic, 24 around the API.

To showcase our technologies developed within the
CompMusic project, we have created a web application for
music discovery called Dunya-web (Porter et al., 2013).
The application displays the resulting automatic analysis.
Dunya-web has a separate organization for each music cul-
ture studied within the CompMusic project. 25

5.4 Dunya-desktop

In addition to Dunya-web, we have been working on a
desktop application for accessing and visualizing the cor-
pora created in the scope of CompMusic project. The aim
is developing a modular and customizable music discov-
ery interface to increase the reusability of the CompMusic
research results to researchers.

Dunya-desktop 26 is directly connected to the Dunya
Framework. The user could query the corpora and down-
load the relevant data to the local working environment
such as music scores, audio recordings, extracted features
(predominant melody, tonic, pitch distribution and etc.).
The interface provides an ability to create sub-collections
to the user. It also comes with some visualization and an-
notation tools for extracted features and music score that
the user could create a customized tool for his/her research
task.

Our software is developed in Python 2.7/3 using PyQt5 27

library. This library allows us to use the Qt5 binaries in
Python programming language. The developed software is
compatible with Mac OSX and GNU/Linux distributions.

The software that we developed as a proof-of-concept
is an extension and customization of Dunya-desktop. The
flow diagram of the user interaction in the desktop appli-
cation is shown in Figure 3. The application allows the
user to search a specific score by filtering metadata. If the
selected composition is in one of the makams with a pre-
set, the user can choose to playback the score synthesized

22 https://www.djangoproject.com/
23 https://www.postgresql.org/
24 https://github.com/MTG/pycompmusic
25 for TMM: http://dunya.compmusic.upf.edu/makam/.
26 https://github.com/MTG/dunya-desktop
27 https://wiki.python.org/moin/PyQt

Figure 3: The flow diagram of the desktop software

according to the AEU theory or to the available tuning pre-
sets. Otherwise, only the synthesis according to the AEU
theory is available.

A screenshot of the score playback window is shown
in Figure 4. Remember that, we have the mapping be-
tween the synthesized audio and the note indices in the
MusicXML score (Section 4.5) and also the mapping be-
tween the note indices in the MusicXML score and the
SVG score (Section 5.1). Therefore, we can synchronize
the SVG score and the synthesized audio. The current
note in playback is highlighted in red on the rendered SVG
score.

Figure 4: A screenshot of the playback window of the soft-
ware

6. DISCUSSIONS AND CONCLUSIONS

In this paper, an automatic synthesis and playback method-
ology that allows users to listen a music score according
to a given tuning system or according to the tuning ex-
tracted from a set of audio recordings is presented. We
have also developed a desktop software that allows users to
discover a TMM score collection. As a proof-of-concept,
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we apply the software on the SymbTr score collection. Ac-
cording to the feedback we have received from musicians
and musicologists, the playback using the extracted tun-
ing from a performance provides a better experience. In
the future, we would like to verify this feedback quantita-
tively by conducting user studies. We would also like to
improve the synthesis methodology by incorporating the
score-informed tuning and intonation analysis
(Şentürk, 2016, Section 6.11) obtained from audio-score
alignment (Şentürk et al., 2014).

7. ACKNOWLEDGEMENTS

We would like to thank Burak Uyar for his contributions
in converting the SymbTr scores from the original tabu-
lar format to MusicXML and Andrés Ferraro for his sup-
port in Dunya-web. This work is partially supported by the
European Research Council under the European Union’s
Seventh Framework Program, as part of the CompMusic
project (ERC grant agreement 267583).

8. REFERENCES
Arel, H. S. (1968). Türk Musikisi Nazariyatı. ITMKD yayınları.
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Popescu-Judetz, E. (1996). Meanings in Turkish Musical Culture. Is-
tanbul: Pan Yayıncılık.

Porter, A., Sordo, M., & Serra, X. (2013). Dunya: A system for brows-
ing audio music collections exploiting cultural context. In Pro-
ceedings of 14th International Society for Music Information Re-
trieval Conference (ISMIR), Curitiba, Brazil.

Powers, et al., H. S. (accessed April 5, 2013). Mode. Grove Music
Online.
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ABSTRACT

The usage of ornaments is key attribute that defines the style of
a flute performances within the genre of Irish Traditional Music
(ITM). Automated analysis of ornaments in ITM would allow for
the musicological investigation of a player’s style and would be
a useful feature in the analysis of trends within large corpora of
ITM music. As ornament onsets are short and subtle variations
within an analysed signal, they are substantially more difficult to
detect than longer notes. This paper addresses the topic of onset
detection for notes, ornaments and breaths in ITM. We propose
a new onset detection method based on a convolutional neural
network (CNN) trained solely on flute recordings of ITM. The
presented method is evaluated alongside a state-of-the-art gen-
eralised onset detection method using a corpus of 79 full-length
solo flute recordings. The results demonstrate that the proposed
system outperforms the generalised system over a range of musi-
cal patterns idiomatic of the genre.

1. INTRODUCTION

Figure 1: Player with Rudall and Rose eight-key simple
system flute manufactured from cocus wood.

Irish Traditional Music (ITM) is a form of Folk music
that developed alongside social dancing and has been an
integral part of Irish culture for hundreds of years (Boul-
lier, 1998). ITM consists of various subgenres and is

played with a wide variety of traditional instrumentation,
including melody instruments such as fiddles, bagpipes, tin
whistles, accordions and flutes. Figure 1 presents an ITM
performer with a wooden simple system flute.

Determining the stylistic differences between players
is an important first step towards understanding how the
music and culture associated with ITM has developed.
Within traditional music, mastery is determined by tech-
nical and artistic ability demonstrated through individu-
ality and variation in performances. Individual playing
style is comprised of several features, including variations
in melody, rhythmic phrasing, articulation, and ornamen-
tation (McCullough, 1977; Hast & Scott, 2004; Keegan,
2010; Köküer et al., 2014).
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Figure 2: Frequency over time of cut and strike articu-
lations showing change of pitch. Long and short rolls,
cranns and single trills are also shown with pitch devia-
tions. Eighth-note lengths are shown for reference.

Automated identification of a player’s style would be
useful in the musicological investigation of various trends
within the ITM timeline. A first step towards automated
style identification is the detection of onsets related to
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notes and ornaments. This study continues the work of Ali-
MacLachlan et al. (2016) by evaluating notes and single-
note ornaments known as cuts and strikes. We also inves-
tigate breaths and the cut and strike elements of multi-note
ornaments known as short roll, long roll, crann and sin-
gle trill as described in Larsen (2003). Figure 2 depicts
single-note and multi-note ornaments over time.

Onset detection algorithms are used to identify the start
of musically relevant events. Ornament onset detection for
Irish traditional flute recordings is a difficult task due to
their subtle nature; ornaments tend to be played in a short
and soft manner, resulting in onsets characterised by a long
attack with a slow energy rise (Gainza et al., 2005; Böck &
Widmer, 2013).

1.1 Related work

There are relatively few studies concentrating on onset de-
tection of flute signals within ITM. Gainza et al. (2004)
and Kelleher et al. (2005) used instrument-optimised band-
specific thresholds alongside a decision tree to deter-
mine note, cut or strike based on duration and pitch.
Köküer et al. (2014) also analysed flute recordings, us-
ing an instrument-specific filterbank and a fundamental
frequency estimation method using the YIN algorithm by
De Cheveigné & Kawahara (2002) to minimise inaccu-
racies associated with octave doubling. More recently,
Jančovič et al. (2015) presented a method for transcription
of ITM flute recordings with ornamentation using hidden
Markov models and Beauguitte et al. (2016) evaluated note
tracking using a range of methods on a corpus of 30 tune
recordings.

Onset detection techniques used in existing flute sig-
nal analysis have largely relied upon algorithms utilising
signal processing, while state-of-the-art generalised on-
set detection methods use probabilistic modelling. Ali-
MacLachlan et al. (2016) evaluated 11 methods that had
previously performed well in the MIREX wind instrument
class. OnsetDetector achieved the highest precision and
F-measure scores. The use of bidirectional long short-term
memory neural networks allows this model to learn the
context of an onset based on past and future information,
resulting in high performance in the context where soft on-
sets and features with small pitch deviations are coupled
with other spurious events.

1.2 Motivation

The approach undertaken in this paper extends upon
the work published in Ali-MacLachlan et al. (2016)
in which onsets were detected through the use of the
OnsetDetector system Eyben et al. (2010). Inter-onset
segment classification was performed using an classifica-
tion method based on a feed-forward neural network.

The OnsetDetector system was trained on a broad
range of music making it effective at detecting a variety
of instrument onsets. While note onset detection accu-
racy was very successful, ornament detection accuracies
proved to be quite low by comparison. In an attempt to

improve onset detection for ITM, we implemented an on-
set detection method based on a convolutional neural net-
work (CNN) and trained this model specifically on ITM
flute recordings. As we believe that the detection of or-
nament onsets to be context-dependent, we evaluate detec-
tion accuracy in relation to events that occur immediately
before and after the detected events. This evaluation allows
us to determine where onset detection errors occur and al-
lows us to observe limitations in the detection of notes,
cuts, strikes and breaths, in the context of traditional music
being played authentically at a professional level.

The remainder of this paper is structured as follows:
Section 2 outlines the proposed onset detection method and
Section 3 presents our evaluation methodology and dataset.
Section 4 presents the results of this evaluation and Section
5 presents conclusions and future work.

2. METHOD

Our onset detection method is based on a convolutional
neural network (CNN) classification method. CNNs share
weights by implementing the same function on sub-regions
of the input. This enables CNNs to process a greater
number of features at a lower computational require-
ment compared to other neural network architectures (i.e.,
multi-layer perceptron). High onset detection accuracies
have been achieved by CNNs using larger input features
(Schluter & Böck, 2014).

Figure 3 gives an overview of the implemented CNN
architecture. The input features are first fed into two sets of
convolutional and max pooling layers containing dropouts
and batch normalisation. The output is then reshaped into
a one-dimensional format before being run through a fully-
connected layer and a softmax output layer.

2.1 Convolutional and max pooling layers

The output h of a two-dimensional convolutional layer
with a rectified linear unit transfer function is calculated
using:

hfij = r

(
L−1∑
l=0

M−1∑
m=0

W f
mlx(i+l)(j+m) + bf

)
(1)

where x is the input features, W and b are the shared
weights and bias and f is the feature map. L and M are
the dimensions of the shared weight matrix and I and J
are the output dimensions of that layer. The equation for
the rectifier linear unit transfer function r is:

r(φ) = max(0, φ) (2)

The output of the convolutional layer hwas then processed
using a max pooling layer which resulted in a I

a by J
b out-

put where a and b are the dimensions of the sub-regions
processed. A dropout layer (Srivastava et al., 2014) and
batch normalisation (Ioffe & Szegedy, 2015) were then im-
plemented.
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Figure 3: Overview of the proposed implemented CNN system with different input feature sizes.

2.2 Fully-connected layer

A fully-connected layer consists of neurons which are
linked to all of the neurons in previous and future layers.
The output Y of a fully connected layer with a rectified
linear unit transfer function is calculated using:

Y = r(Wcz + bc) (3)

where z is the input, Wc is the weight matrix and bc is
the bias. For the softmax output layer the rectified linear
unit r transfer function is swapped for the softmax function
which is calculated using:

softmax(φ) =
eφ∑
eφ

(4)

2.3 Implementation

The CNN was implemented using the Tensorflow Python
library (Abadi et al., 2016) with training data consisting of
target activation functions created from ground truth an-
notations. A frame-based approach was taken where each
frame is assigned 1 if it contains an onset or 0 if it does not.

2.4 Input features

Before processing by the CNN, the audio files must be seg-
mented into frame-wise spectral features. An N sample
length audio file was segmented into T frames using a Han-
ning window of γ samples (γ = 1024) and a hop size of
γ
2 . A frequency representation of each of the frames was
then created using the discrete Fourier transform resulting
in a γ

2 by T spectrogram. Various centred on the frame to
be classified.

As classification is performed on the frame at the centre
of the input features, a potentially crucial parameter is the

number of input frames ψ. To determine the most efficient
number of frames to use as the input for the CNN, five
different values for ψ were used (ψ = [5, 11, 21, 41, 101])
creating the CNN5, CNN11, CNN21, CNN41, CNN101 versions
respectively.

2.5 Layer sizes

The layer sizes used for the different input features are in-
dicated at the bottom of Figure 3. The size of all layers are
consistent across systems apart from the second dimension
k of the second max pooling layer. k is set to 1, 2, 3, 5 and
10 for the different input features sizes respectively.

2.6 Peak picking

The onsets must be temporally located from within the ac-
tivation function Y output from the CNN. To calculate on-
set positions, the method from Southall et al. (2016) is
used. A threshold τ is first determined using the mean
across all frames and a constant λ:

τ = λȲ (5)

The current frame t is determined to be an onset if its mag-
nitude is greater than those of the surrounding two frames
and above threshold τ .

O(t) =

{
1, yt = max(yt−1:t+1) & yt > τ,
0, otherwise.

(6)

Finally, if an onset occurs within 25ms seconds of another
then it is removed.

2.7 Training

The training data is divided into 1000 frame mini-batches
consisting of a randomised combination of 100 frame re-
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Player Album(s) Reels Jigs Polkas Hornpipes
Harry Bradley The First of May 8 4 4
Bernard Flaherty Flute Players of Roscommon Vol.1 2
John Kelly Flute Players of Roscommon Vol.1 1 1
Josie McDermott Darby’s Farewell 2 2 2

Catherine McEvoy
Flute Players of Roscommon Vol.1,
Traditional Flute Playing in the Sligo-Roscommon Style

4

Matt Molloy Matt Molloy, Heathery Breeze, Shadows on Stone 5 2
Conal O’Grada Cnoc Bui 13 1 10
Seamus Tansey Field Recordings 4
Michael Tubridy The Eagle’s Whistle 2 9
John Wynne Flute Players of Roscommon Vol.1 3

Table 1: Dataset recordings showing player, album source and tune type.

gions from the feature matrix. The Adam optimiser is used
to train the neural networks with an initial learning rate
of 0.003. Training is stopped when the validation set ac-
curacy does not increased between iterations. To ensure
training commences correctly, the weights and biases are
initialised to random non-zero values between ±1 with
zero mean and standard deviation equal to one. The per-
formance measure used is cross entropy and the dropout
probability d is set to 0.25 during training.

3. EVALUATION

As the performance of the proposed method depends heav-
ily on the accuracy of the chosen onset detection method,
the aim of our first evaluation is to determine the quality of
existing timing data. We then perform an evaluation of our
onset detection method by comparing it against the most
successful method found in Ali-MacLachlan et al. (2016).

3.1 Dataset

The corpus for analysis consists of 79 solo flute recordings
by nine prominent traditional flute players. Four common
types of traditional Irish tune are represented: reels, jigs,
hornpipes and polkas. Individual players are discussed in
Köküer et al. (2014) and players, tune type and recording
sources are detailed in Table 1.

The dataset contains annotations for onset timing infor-
mation and labels for notes, cuts, strikes and breaths, and
is comprised of approximately 18,000 individual events.
First notes of long rolls, short rolls and cranns were also
identified and labelled.

3.2 Onset detection evaluation

The ground truth annotation process was completed using
multiple tools as the project evolved (Köküer et al., 2014;
Ali-MacLachlan et al., 2015) resulting in inconsistencies
being found in onset placement and labelling. We there-
fore improved the quality of these annotations by compar-
ing ground truth onsets against true positive and false neg-
ative onsets obtained using OnsetDetector (Eyben et al.,
2010). Events outside a 50ms window of acceptance were
evaluated by an experienced flute player, allowing events to

be checked for onset accuracy. Patterns containing impos-
sible sequences of events were identified and eliminated
by checking each event in context with previous and sub-
sequent events.

To obtain the results for the OnsetDetector system
on the updated dataset all tracks were processed with
the output onset times compared against the annotated
ground truth. We assess the accuracy relating to the
OnsetDetector method before and after annotation cor-
rection and the number of spectrogram frames used as in-
put.

We then evaluate the OnsetDetector system against
the implemented CNN systems the dataset is divided by
tracks into a 70% training set (55 tracks), 15% validation
set (12 tracks) and 15% test set (12 tracks). The training
set is used to train the five versions of the CNN (CNN5,
CNN11, CNN21, CNN41, and CNN101) onset detector using
the different input feature sizes, the validation set is used
to prevent over-fitting and the test set is used as the unseen
test data. The OnsetDetector results for the 12 test tracks
are compared to the results from the 5 CNN versions. F-
measure, precision and recall are used as the evaluation
metrics with onsets being accepted as true positives if they
fall within 25ms of the ground truth annotations.

4. RESULTS

4.1 Onset detection results

P R F
OnsetDetector
Before annotation improvement 83.06 75.10 78.75

OnsetDetector
After annotation correction 85.86 78.46 81.85

CNN5 87.06 84.71 85.73
CNN11 88.07 84.73 86.25
CNN21 88.82 88.26 88.46
CNN41 88.84 86.63 87.58
CNN101 88.72 86.21 87.32

Table 2: Precision (P), Recall (R) and F-measure (F) for
OnsetDetector (Eyben et al., 2010) before and after an-
notation improvement, CNN5, CNN11, CNN21, CNN41, and
CNN101.
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True Positives
Label
Code

Musical Pattern Event Context
Onset

Detector
CNN21 Total

111 note note note single notes 1097 1124 1184
211 note cut note single cuts 229 269 310
121 cut note note single cuts 133 237 270
112 note note cut single cuts 192 198 220
114 note note breath single notes 96 99 106
411 note breath note single notes with breath 21 53 88
311 note strike note single strike, end of roll 55 42 76
122 cut note cut trill 13 48 63
141 breath note note single notes 55 56 61
131 strike note note single strike, end of roll 16 33 57
123 cut note strike rolls 14 33 36
261 note cut note start of long roll 27 30 30
153 cut note strike start of short roll 8 22 24
511 note cut note note before start of short roll 18 21 23
612 note note cut note before start of long roll 20 20 21
142 breath note cut breath before single cut 19 20 20
241 breath cut note breath before single cut 12 17 19
412 note breath cut breath before single cut 3 11 19
115 note note cut two notes before start of short roll 16 17 18
271 note cut note start of crann 15 16 18
116 note note note two notes before start of long roll 16 16 17
113 note note strike single strike 14 13 15
117 note note note two notes before start of crann 14 14 14
712 note note cut note before start of crann 13 12 14
132 strike note cut cut after roll 3 9 12

Table 3: Results comparing OnsetDetector and CNN21 onset detectors for all event classes in the context of events
happening prior and subsequent to the detected onset. Label codes of patterns with under 70% accuracy for CNN21 shown
in bold. Patterns with under 10 total onsets omitted.

111 211 121 112 114 411 311 122 141 131 123 261 153 511 612 142 241 412 115 271 116 113 117 712 132
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Figure 4: Accuracy of OnsetDetector and CNN21 onset detectors for each event class above 10 onsets.

Table 2 presents the overall precision, recall and F-
measure performance for the OnsetDetector and five
CNN versions. The results indicate that all versions of
the CNN achieve higher results than the OnsetDetector.
The CNN21, which uses 10 spectrogram frames prior and

subsequent to the middle frame achieves the highest recall
and F-measure. The CNN41 achieves a slightly higher pre-
cision than the CNN21, however achieves lower recall ac-
curacy. The performance across the five CNN versions is
fairly similar, illustrating that the moderate to higher values
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for the ψ parameter (ψ = [21, 41, 101]) are most appropri-
ate for the task. The high performance of this approach is
likely due to two factors. First, as CNNs are capable of
processing large input feature sizes, they incorporate more
context into the detection of a single frame. Second, as the
CNNs are trained solely on traditional flute signals there
is less variation in the represented classes, which has the
potential of improving accuracy.

4.2 Note, cut and strike onset detection accuracy

Table 3 presents the onset detection results for each class
of musical pattern with over 10 onsets in the test cor-
pus of 12 tunes. The mean pattern precision across all
classes was 79.22 for CNN21 in comparison with 59.86 for
OnsetDetector.

The classes consist of three event types where the cen-
tral event is identified in bold. For example, label code 211
(note cut note) is a detected cut with a note before it and
note after it, which exists within the event context of short
and long roll or a single cut. The number of correctly de-
tected onsets (true positives) is found as a percentage of the
overall number of annotated onsets of that pattern. Label
codes with an accuracy of less that 70% are shown in bold.

Notes Cuts Strikes Breaths
OnsetDetector 76.31 77.78 72.37 19.83
CNN21 89.57 91.29 55.26 59.06

Table 4: Accuracy of OnsetDetector and CNN21 onset
detectors for note, cut, strike and breath classes above 10
onsets.

As can be seen in Figure 4 and Table 3, low accura-
cies were found for strikes and notes following strikes. As
a strike is played by momentarily tapping a finger over a
tonehole, the pitch deviation is often much smaller than
that of a cut and the event time is often shorter, making
it more difficult to detect. Breaths are also difficult to de-
tect in commercial recordings because it is usual to apply
a generous amount of reverb effect at the mixing stage, re-
sulting in a slow release masking a defined offset. Table
4 further illustrates inaccuracies in the detection of strikes
and breaths by showing the accuracy for each single event
class - note, cut, strike and breath. The note class also in-
cludes the notes at the start of ornaments such as long roll
and crann and the cut class includes cuts at the start of short
rolls.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an onset detection method
based a convolutional neural network (CNN) and is trained
solely on Irish flute recordings. The results from the eval-
uation show that this method outperformed the existing
state-of-the-art generalised trained OnsetDetector. We
have also improved the annotations of a ITM dataset by
employing a process of automatic onset detection followed
by manual correction as required. To evaluate the effec-
tiveness of this approach, the top performing CNN version

(CNN21) method is compared to the OnsetDetector by
(Eyben et al., 2010), most successful method found in Ali-
MacLachlan et al. (2016).

In future research, we aim to develop note and orna-
ment classification methods with additional features and
attempt other neural network architectures in order to cap-
ture trends that appear in time-series data. We plan to re-
lease a corpus of solo flute recordings that will allow a
deeper study into differences in playing style, and to ex-
tend this corpus to include other instruments. We also
plan to investigate the generality of the proposed system to
other instruments characterised by soft onsets such as the
tin whistle and fiddle. The dataset used in this paper will
also be released shortly, alongside Köküer et al. (2017).
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Eyben, F., Böck, S., Schuller, B., & Graves, A. (2010). Univer-
sal Onset Detection with Bidirectional Long Short-Term
Memory Neural Networks. In Proceedings of the Interna-
tional Society for Music Information Retrieval Conference
(ISMIR), (pp. 589–594)., Utrecht, Netherlands.

Gainza, M., Coyle, E., & Lawlor, B. (2004). Single-note orna-
ments transcription for the irish tin whistle based on onset
detection. Proc Digital Audio Effects (DAFX), Naples.

Gainza, M., Coyle, E., & Lawlor, B. (2005). Onset detection
using comb filters. New Paltz, New York, USA.

Hast, D. E. & Scott (2004). Music in Ireland: Experiencing Mu-
sic, Expressing Culture. Oxford, UK: Oxford University
Press.

Proceedings of the 7th International Workshop on Folk Music Analysis, 14-16 June 2017, Málaga (SPAIN) 
ISBN: 978-84-697-2303-6

78



Ioffe, S. & Szegedy, C. (2015). Batch normalization: Acceler-
ating deep network training by reducing internal covariate
shift. CoRR, abs/1502.03167.
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ABSTRACT 

This paper investigates several enhancements to two 

well-established local alignment algorithms in the context 

of their use for melodic similarity. It uses the annotated 

dataset from the well-known Meertens Tune Collection to 

provide a ground truth and the research aim to answer the 

question, to what extent do these enhancements improve 

the quality of the algorithms? In the results, recursive ap-

plication of the alignment algorithms, applied to a multi-

level representation of the melodies, is shown to be very 

effective for improving the accuracy of the classification 

of the tunes into families. However, the ideas should be 

equally applicable to music search and melodic matching. 

1. INTRODUCTION 

1.1 Background 

In the field of music information retrieval an important 

topic, impacting on music search, melodic matching / 

clustering and tune classification, is the calculation of 

melodic similarity. This paper investigates several en-

hancements to two well-established local alignment algo-

rithms in the context of their use for melodic similarity. 

It builds on results established by Janssen et al., [1], 

[2] and van Kranenburg et al., [3], which suggest that 

alignment-based similarity measures provide some of the 

best results for matching melodic segments, or indeed 

whole melodies, in a corpus of folk songs. 

It uses an annotated dataset from the Meertens Tune 

Collection, [4], to provide a ground truth with which to 

evaluate the quality of the enhancements and for that rea-

son deals with classification of melodies into tune fami-

lies. However, the algorithms should be equally applica-

ble to music search, e.g. [5], and melodic matching, e.g. 

[6], where some of the ideas were originally presented.  

1.2 Organisation 

The paper is organised as follows: section 2 presents the 

baseline algorithms and four enhancements. Section 3 

discusses the evaluation and section 4 presents the results. 

Conclusions and further work are discussed in section 5. 

2. ALGORITHMIC VARIANTS 

This section discusses the alignment-based algorithms 

tested for the classification problem. Initially the two 

baseline algorithms, local alignment and longest common 

substring, are outlined (section 2.1). Subsequently a 

number of enhancements are discussed, including length 

normalisation (section 2.2) and the rhythmic representa-

tion of the melody (section 2.3), as well as globalising 

and multilevel enhancements (sections 2.4 & 2.5).  

2.1 Baseline Similarity Measures 

2.1.1 Local alignment (LA) 

Local alignment is a well-known technique originating 

from molecular biology. Given two strings it finds the 

optimal alignment for two sub-sequences of the originals. 

The algorithm does not require the aligned sub-sequences 

to match exactly and makes allowances for gaps and sub-

stitutions. For example the strings ***abcde** and 

*acfe**** (where the asterisks represent non-

matching entries) could potentially be aligned between a 

and e with a gap at the b and the substitution of d for f. 

Gaps (otherwise known as insertions and deletions) and 

substitutions are penalised with weights. 

The algorithm is known as local alignment (LA) be-

cause, unlike the global alignment algorithms which pre-

ceded it, mismatching sub-strings from either side of the 

alignment are not penalised (i.e. in the example, the string 

of non-matching entries, indicated by asterisks, could be 

arbitrarily long without changing the alignment score). 

To compute the optimal local alignment for two strings 

of length m & n, an (m+1) x (n+1) score matrix A is con-

structed with the top row and left hand column initialised 

to zero. The remainder of the matrix is then filled using  

���, �� = max
��
����� − 1, � − 1� + ���� , ������, � − 1� + �gap��� − 1, �� + �gap0

 

 

where ���� , ��� =  ��match         if  �� = ���substitution if  �� ≠ �� 

 

and where Wmatch, Wsubstitution and Wgap represent the 

weights for a matching or substituted entry or a gap in the 

aligned sequences. The implementation discussed here 

follows Janssen et al., [1], [2], and uses Wmatch = 1, Wsubsti-

tution = –1 and Wgap = –0.5. 

This algorithm was introduced by Smith & Waterman, 

[7]. In fact their original scheme is a little more computa-

tionally involved but the scheme above is widely used 

and is the variant tested by Janssen et al.  

To calculate the alignment score, and hence the quali-

tative similarity, the above scheme suffices. However to 

determine the aligned sub-sequences (needed for recur-

sion, section 2.4) a trace-back procedure is required. The 

trace-back is implemented by recording a matrix of 

DIAG, UP or LEFT pointers for every entry of the score 

matrix indicating where the maximum value originated. If 

the maximum value is zero an END pointer is stored. 
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The trace-back starts at the pointer matrix entry corre-

sponding to the maximum score found and then tracks 

back through the pointers, terminating when it reaches an 

END. Diagonal moves indicate contiguous values in the 

two aligned sub-sequences whilst left or up moves indi-

cate a gap in one of them. 

2.1.2  Longest Common SubString (LCSS) 

The longest common substring algorithm also finds 

matched sub-sequences from two strings but requires the 

sub-sequences to match exactly with no gaps or substitu-

tions. It operates in a very similar fashion to local align-

ment filling in an (m+1) x (n+1) matrix of alignment val-

ues. However, because there is no need to allow for gaps, 

no trace-back is required: the position of the maximum 

score in the matrix indicates the end of the longest com-

mon substring and the value of this entry gives its length.  

2.1.3 Sub-sequence alignment 

In fact it is easy to see that, if the local alignment weights 

Wsubstitution and Wgap are sufficiently large so that gaps and 

substitutions can never occur, then the LCSS algorithm is 

just a special case of local alignment. 

From here on, therefore, both algorithms, LA and 

LCSS, will be referred to collectively as sub-sequence 

alignment, the main distinction between the two being 

that LCSS produces exact matching aligned substrings, is 

faster to compute and requires less memory (there is no 

need to use a full matrix and a memory efficient version 

exists which just repeatedly swaps a pair of arrays, one 

containing the row under calculation and one containing 

the previous row). Conversely, LA is more computation-

ally complex and more memory intensive, but will gener-

ally match longer strings.  

Both algorithms can be used for melodic similarity by 

representing each melody as a sequence of pitches or in-

tervals: here intervals are used (see section 3.2). Then, if 

using Wmatch = 1 for LA, the similarity measure , SXY, that 

either algorithm calculates between a pair of melodies, X 

and Y, represents the length (the number of notes) of the 

sub-sequences aligned. However, in the case of LA there 

may also be penalty weights for gaps or substitutions (for 

example, the matching of abcde with acfe has a score 

of 1 – ½ + 1 – 1 + 1 = 1½). 

2.2 Normalisation 

The first simple algorithmic variant is just the way that 

the raw similarity measure is normalised. In their papers, 

[1], [2], Janssen et al. normalise the similarity SXY by di-

viding by the length of the query. In the context of their 

use of short melodic phrases to query a database of melo-

dies, and since the longest query is normally much short-

er than the shortest melody, this means that the similarity 

measure is effectively normalised by min(length(X), 

length(Y)), In addition, since the maximum value possi-

ble of SXY is also min(length(X), length(Y)), i.e. the 

length of the shortest of the two sequences being com-

pared, then SXY gives a value between 0.0 and 1.0 (with 

1.0 being returned when an exact match of the query is 

found within the melody being queried). 

For phrase-based classification studied in [1], [2], this 

makes perfect sense; there is no expectation that the que-

ry will match the entire tune. However, for the tune-based 

classification discussed here, that is no longer true and so 

using the minimum length may no longer be appropriate. 

For example, consider matching the sequence abc with 

two other sequences, abc and abcdef. In both cases the 

raw similarity is 3 and using minimum length (also 3) to 

normalise, the normalised similarity is 3/3 = 1.0. Howev-

er, it does seem unreasonable that the similarity is the 

same in both cases (particularly since the match with the 

first sequence is exact, whereas the sequence abcdef 

could be arbitrarily long without changing the result). 

Alternatives are to normalise with the maximum 

length or the average length. For example consider 

abcxyz matching with abcdef and abcdefghi. Us-

ing minimum length the normalised similarity is 0.5 for 

both matches (3/6) which doesn't seem unreasonable. 

However, using either maximum or average length, a se-

quence with identical raw similarity (in this case 3) to 

two other sequences will be normalised as closer to the 

one which is of a similar length, and arguably this is more 

appropriate. 

Because it is not immediately clear which normalisa-

tion to use, the experimentation tests all three empirically. 

2.3 Representation – bar indicators 

A second algorithmic variant tries to take account of the 

position of notes within the bar. This is particularly rele-

vant for folk music (although perhaps less so for jazz) 

since the position often determines which are the stressed 

(more important) notes. 

One way to achieve this is to adapt the similarity 

measure to add weight to stressed notes, e.g. [8]. Howev-

er, that relies on what is arguably a subjective assessment 

of which are the stressed notes. Instead, as discussed in 

[5], it is possible to use bar indicators or even bar num-

bers in the sequences of intervals to be compared. For ex-

ample a major scale can be indicated by the intervals 

2212221. Including bar indicators, and assuming 4 

notes to the bar this could be represented as 

|221|2221| where the | symbols represent bar lines 

(note that an interval between the last note in a bar and 

the first note in the next bar, could be shown before or 

after the bar indicator; in the experiments here it is al-

ways included afterwards). This means that any matched 

common substrings must respect bar lines (unless they 

are shorter than the length of a bar).  

Furthermore, if the bar symbols are numbered, e.g. 

|1221|22221|3, where each |i represents a numbered 

bar, then matched common substrings also need to re-

spect the position in the tune. (If matching of subsections 

of the tune is important then the numbering could be re-

started at natural breaks such as double bar lines and re-

peat marks; however, that is not tested here.) 

In terms of implementation, the “strings” of intervals 

are represented as an array of short integers so that bar 

markers (or numbers) can easily be included with large 

integer values outside the possible range of intervals. 
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This inclusion of bar indicators is more of a represen-

tational variant than an algorithmic one and increases the 

computational complexity of the matching slightly (as the 

strings to be compared by the similarity measure are 

longer). However, even though some melodies in the da-

taset under investigation are in free meter and have no bar 

lines, it has a significant effect on the results and is an 

important enhancement. 

2.4 Recursive sub-sequence alignment 

2.4.1 Recursive alignment (= global alignment) 

A problem with using LCSS, and to a lesser extent LA, is 

that they are local. For example, using LCSS, ab**ba 

has exactly the same raw alignment score (of 2) when 

matched with **ab and with ab**ba, even though the 

latter seems a far better match. This is because the second 

match (ba) is not accounted for. 

This was less of an issue in the predecessor to this pa-

per, [9], where LCSS was used as part of a multilevel me-

lodic search algorithm, since search algorithms are typi-

cally trying to find the best matches of a short phrase in a 

dataset of complete melodies. However, for classification 

it is crucial to distinguish between tunes which match 

well across their entire length and those which perhaps 

only match for a short segment. 

Interestingly Smith & Waterman touch on this in their 

original paper where they say “the pair of segments with 

the next best similarity is found by applying the trace-

back procedure to the second largest element of [the ma-

trix] not associated with the first trace-back”, [7]  

Unfortunately, working from the existing matrix may 

lead to overlapping local alignments and instead sub-

sequence alignment may be applied recursively as fol-

lows: when applied to two strings, S1 and S2, sub-

sequence alignment splits both into three substrings S1 = 

L1 + A1 + R1 and S2 = L2 + A2 + R2, where A1 and A2 

are the aligned substrings (exact matches for LCSS or po-

tentially with gaps and substitutions for LA), L1 and L2 

are the left hand side unmatched substrings and R1 and 

R2 are the right hand side unmatched substrings (where 

any of the these unmatched substrings may be of length 

0). Thus, having found A1 & A2 and split S1 & S2, sub-

sequence alignment can then be applied to compare L1 

with L2 and R1 with R2.  

This procedure continues recursively, terminating 

when no alignment is found, or one or both lengths of the 

substrings being aligned are 0. For example, if the start of 

S1 is aligned with the end of S2 no further recursion is 

possible as the lengths of L1 and R2 are 0. 

This recursion effectively turns the local alignment al-

gorithms LCSS or LA into a globalised similarity meas-

ure, giving an alignment score along the length of both 

strings being compared. Henceforth these recursive algo-

rithms will be referred to as RLCSS and RLA. 

2.4.2 Biased recursive local alignment 

An issue that became apparent when using recursive 

alignment, is that just adding all the scores together 

makes no distinction between one long aligned sequence 

and several shorter ones. For example (using RLCSS) 

abcd**** has the same alignment score (of 4) when 

compared with abcd**** and with 

**a**b**c**d**, even though the former seems a 

good match and the matching with the latter is essentially 

noise. 

To address this, the similarity measure can be biased 

towards longer aligned sub-sequences by taking the 2-

norm (square root of the sum of squares) of the alignment 

scores found by the recursive local alignment. In the 

above example this means that the biased recursive local 

alignment score is Ȃ4, = 4 when matching abcd**** 

with abcd****, whereas when matching with 

**a**b**c**d** it is Ȃ1, + 1, + 1, + 1, = 2.  

2.5 Multilevel Similarity 

 
Figure 1. Two tune variants for Speed the Plough. 

 

Multilevel similarity was first introduced in [5] and sub-

sequently developed further in [6]. The idea is motivated 

in Fig. 1 which shows two versions of the first 4 bars of 

Speed the Plough, a tune well-known across the British 

Isles. Clearly these tunes are related but with distinct dif-

ferences, particularly in the second and fourth bars. 

It is typical in tunes like this that the emphasis is 

placed on the odd numbered notes, and in particular the 

first note of each beam. The strongest notes of the bar are 

thus 1 and 5, followed by 3 and 7. 

To capture this emphasis when matching tune variants 

it might be possible to use some sort of similarity metric 

which weights stress (so that matching 1st notes carry 

more importance than, say, 2nd notes, e.g. [8]). However, 

an alternative approach is to build a multilevel (hierar-

chical) representation of the tunes. 

Figs. 3 & 4 show multilevel coarsened versions of the 

original tunes, where the weakest notes are recursively 

replaced by removing them and extending the length of 

the previous note by doubling it.  

At level 0, i.e. the original, the tunes are quantised to 

show every note as a sixteenth note, thus simplifying the 

coarsening process. In addition the triplet in bar 3 of 

“God Speed the Plough” is simplified by representing it 

as two eighth notes, the first and last notes of the triplet. 

To generate level 1, the 2nd, 4th, 6th and 8th notes are 

removed from each bar. (Interestingly this accords with 

an idea used by Breathnach, [10], the renowned collector 

of Irish traditional music, who developed a system for 

indexing melodies based on the accented notes of each 

tune – effectively level 1 in the multilevel hierarchy). 

For level 2, the original 3rd and 7th notes (which are 

now the 2nd and 4th) are removed; for level 3, the origi-

nal 5th note (now the 2nd) is removed.  
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Figure 2. Multilevel coarsening of Speed the Plough 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Multilevel coarsening of God Speed the Plough 

 

As can be seen, as the coarsening progresses the two 

versions become increasingly similar and thus provide a 

good scope for melodic comparisons by ignoring the finer 

details of the tunes. 

The implementation of this scheme is discussed more 

fully in [6] but is mostly straightforward. Each tune is ini-

tially normalised & quantised and then recursively coars-

ened down to a skeleton representation with just one note 

per bar. Melodic similarity calculations can then take 

place at every level and the (possibly weighted) sum of 

the similarities at each level used to provide a multilevel 

similarity measure (see section 4.5). 

The coarsening works by recursively removing “weak-

er” notes from each tune to give increasingly sparse rep-

resentations of the melody. In the current implementation 

the coarsening strategy considers that the weaker notes 

are the off-beats or every other note and it is these which 

are removed (see Figs. 3 & 4). However, it should be 

stressed that the multilevel framework is not tied to a par-

ticular coarsening strategy and in principle any algorithm 

that can reduce the detail in the melody (preferably recur-

sively) could be used. For example, it should even be 

possible to use something as complex as a Schenkerian 

reduction, [11]; conversely multilevel algorithms in other 

fields often use randomised coarsening, [12]. 

Exceptions to the “remove every other note” rule are 

handled with heuristics, typically for tunes in compound 

time. Thus for jigs in 6/8, 9/8 & 12/8, which are normally 

written in triplets of eighth notes, the weakest notes are 

generally the second of each triplet. The same applies for 

waltzes, mazurkas and polskas in 3/4, so that for 3 quarter 

notes in a bar, the weakest is generally the second. The 

heuristics for dealing with these, and other less common 

time signatures, are discussed in [9]. 

Coarsening progresses until there is one note remain-

ing in each bar; it would be possible to take it further, 

coarsening down to one single note for a tune, but exper-

imentation suggests that the bar is a good place to stop. In 

fact some tunes in the dataset under investigation are in 

free meter, with no bar lines, and hence are coarsened 

down to a single note. An artificial limit of 4 levels (typi-

cal for many time signatures) was tested, but made very 

little difference to the results, particularly since any ex-

cess levels are ignored when comparing melodies with 

differing numbers of levels. 

Once the multilevel representation is constructed, a va-

riety of methods (including the alignment algorithms dis-

cussed here) can be used to compare each level. Again, 

this is a strength of the multilevel paradigm which is not 

reliant on a particular local search strategy, [12]. 

In the experiments below, multilevel variants are re-

ferred to as ML-*, where the * indicates the sub-sequence 

alignment algorithm (e.g. RLA). Conversely, if the multi-

level representations are not used the similarity frame-

work is referred to as SL-* (i.e. single level). 

3. EVALUATION 

3.1 The dataset 

The dataset used is the Annotated Corpus of the Meertens 

Tune Collection, version 2.0.1, [4]. This contains 360 

melodies each identified as belonging to one of 26 tune 

families. It also includes further annotations, splitting 

each melody into phrases, with three annotators manually 

assigning labels to each phrase. These have been used by 

Janssen et al., [1], [2], for testing search queries based on 

phrases, rather than whole melodies. However, since the 

investigation under discussion deals with globalised 

a2lignment algorithms it was decided to ignore the 

breakdown of the melodies into their constituent phrases. 

3.2 Representation - transposition & time dilation  

In [2], Janssen et al. present a comparison of several al-

gorithms and indicate that what can make a big difference 

to the results is the representation of the music. In par-

ticular they find that using pitch adjustment in order to 

resolve transposition differences (i.e. similar melodies 

transcribed in different keys) can significantly improve 

the performance of the algorithms. However, the premise 

for their research is that the tune families are known in 

advance and so the pitch adjustment scheme uses this in-

formation and aims to transpose all the melodies in a giv-

en family into the same key. This does not apply for the 

work presented here where the aim is to classify each 

query melody into one of the 26 tune families, under the 

assumption that this is not known beforehand. 

Perhaps a more appropriate scheme would be the 

pairwise pitch adjustment used by van Kranenburg et al., 

[3]. However, in the experimentation below, the algo-

rithms are made transposition invariant by representing 

each melody as a sequence of pitch intervals. In contrast 

with Janssen et al., [2], this was not found to deteriorate 
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the algorithmic performance and it may be the case that 

their pitch adjustment scheme provides better results than 

intervals because it uses tune family information that 

would not normally be available for an arbitrary dataset. 

Another interesting representational idea is the dura-

tion adjustment scheme, again from Janssen et al., [2], 

which seeks to adjust the note durations in a similar man-

ner to pitch adjustment so that melodies transcribed in 

different meters (e.g. 3/4 and 6/8) are more closely com-

parable. However, that has not yet been tested with the 

algorithms described here. 

In terms of the variants discussed by Janssen et al., the 

musical representation used in all experiments presented 

here is duration weighted pitch intervals, i.e. a representa-

tion which repeats each pitch according to the length of 

the note and with a sequence of integers expressing the 

difference in semitones between successive pitches. 

3.3 Evaluation – Receiver Operating Curves (ROC) 

The evaluation of each algorithmic variant is straightfor-

ward. Each of the 360 melodies is used as a query and 

compared against the other 359 melodies with the algo-

rithm assigning a similarity score between the query and 

each melody. This results in 360 arrays, each containing 

359 similarity scores. 

Each array can then be used to generate a Receiver 

Operating Characteristic (ROC) curve which plots the 

true positive rate (TPR) against the false positive rate 

(FPR) in the ground truth as the results array is traversed. 

ROC curves are an elegant, generic tool often used to 

evaluate classification experiments across a wide range of 

disciplines, [13]. In fact they do not even require the 

similarity scores as input, they just need the results sorted 

in order of decreasing similarity and the ground truth (in 

this context whether a melody belongs to the same tune 

family as the query or not) to determine positive or nega-

tive outcomes. 

Typically ROC curves are compared by measuring the 

Area Under the Curve (AUC). Since any ROC is con-

fined to the unit square, the corresponding AUC is a val-

ue between 0.0 and 1.0 with higher values indicating a 

better classification algorithm. An AUC value of 1.0 in-

dicates that the algorithm has done a perfect classification 

with all the true positives sorted by the similarity scores 

to one end of the array (and hence all the true negatives 

sorted to the other end). Conversely an AUC of 0.5 indi-

cates that the algorithm has essentially done no better 

than a random classification. 

Since each algorithmic variant results in 360 ROC 

curves, a method for combining them together is required. 

Janssen et al., [1], [2], aggregate all of the similarity re-

sults into one ROC curve and then measure the area un-

derneath. However although this is a recognised tech-

nique, e.g. [13], it is not area-preserving in the sense that 

the average area under the individual curves is not neces-

sarily the same as the area under the aggregated curve. 

To see this, suppose an algorithm produces similarity 

scores of [1.00, 0.49, 0.00] for a particular search query 

and dataset of 3 melodies when the corresponding ground 

truth is [true, true, false] (in other words the melody with 

the similarity score of 0.00 is not a member of the same 

family as the search query, whereas the other two are). 

Since the similarity measure has done a perfect job of or-

dering the dataset using the similarity scores (perfect in 

the sense that all the true matches are at left hand end of 

the array and all the false matches at the other end), the 

ROC curve representing this would actually run up the x-

axis and then along the line y = 1, giving the maximum 

possible AUC of 1.0. 

Now suppose that a second search query produces sim-

ilarity scores of [1.00, 1.00, 0.51] with the same corre-

sponding ground truth of [true, true, false]. Once again 

the ordering is perfect and the area under the curve is 1.0. 

So the average AUC across the 2 queries is 1.0. 

However, if the scores and ground truths are aggregat-

ed to form a single curve the results are no longer perfect 

as 0.49 is smaller than 0.51 and so the ordered ground 

truth array is [true, true, true, false, true, false]. The AUC 

for the corresponding ROC is 0.875. 

Conversely, consider 2 search queries used on a da-

taset of 4 melodies and producing the results [1.00, 1.00, 

0.52, 0.51] and [1.00, 1.00, 0.49, 0.48], both with corre-

sponding ground truth of [true, true, false, true]. In this 

case the classifier has not done a perfect job and the AUC 

for each ROC is 0.667. When the results are aggregated 

the ordered ground truth array is [true, true, true, true, 

false, true, false, true] and the corresponding aggregated 

ROC has an AUC of 0.75. 

Thus it is possible that the area under the aggregated 

curve can be significantly different (either lower or high-

er) from the average area under the individual curves. 

Of course, as more results (more search queries, a 

larger dataset) are included, it is likely that the differ-

ences between the average AUC and the AUC for the ag-

gregated ROC will diminish. Nonetheless, the aggregated 

ROC may not be telling the whole story. 

In this paper the results for each algorithm are aggre-

gated simply by taking an average of all the AUC values 

for that algorithm. Then, in order to draw the ROCs in 

Fig. 1, it is possible to use Fawcett’s vertical averaging 

algorithm in [13] (Algorithm 3). Although Fawcett de-

scribes vertical averaging by sampling the ROC space at 

regular intervals, this is easily adapted to the non-

parametric scheme described by Chen & Samuelson, [14], 

where it is sampled at every possible FPR value. With 

this adaptation in place, Chen & Samuelson have proven 

that the averaged ROC is area preserving, i.e. the AUC 

for the averaged ROC is the same as the average AUC 

across the individual ROCs (up to rounding differences). 

3.4 Classification success rate (CSR) 

Finally, to evaluate the quality of the tune classification 

into families, the nearest neighbour scheme described by 

van Kranenburg et al., [3], is applied. Specifically the 

melody in use567 as a query is assigned to the tune fami-

ly of the nearest neighbour in terms of similarity. This 

assumes that the tune families of the 359 other melodies 

are known and that of the query is the unknown. However, 

for an arbitrary unannotated dataset, with no known tune 

families, it should be possible to use proximity graphs, 

similar to those described in [6] and with suitably chosen 

thresholds, to suggest tune family membership. 
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In the event that a number of melodies are nearest 

neighbours (i.e. have the same similarity with the query) 

then here ties are broken by considering the set of all such 

melodies and picking the tune family with the largest 

similarity contribution across the set. 

Finally since, unlike van Kranenburg et al., [3], this 

experimentation is only applied to the small annotated 

dataset of 360 tunes, the classification success rate (CSR) 

can be calculated as a simple percentage |S|/360 where S 

is the set of tune family labels successfully identified. 

4. EXPERIMENTATION 

This section discusses the results: throughout the algo-

rithms are applied cumulatively with the best perorming 

approach from each section used in the following section. 

4.1 Baseline results 

Table 1 shows the results for the baseline algorithms, sin-

gle level LCSS & LA, showing the average AUC across 

all of the queries (which as mentioned above is the same 

as the AUC for the averaged ROC) and the classification 

success rate (CSR). 

 

Algorithm Variant 

Avg 

AUC CSR 

SL-LCSS   baseline 0.787 0.697 

SL-LA     baseline 0.787 0.814 

Table 1. Results from the baseline algorithms, LCSS & 

LA (see section 2.1). 

In this table (as all others) the best AUC figures for 

LCSS & LA variants are shown in boldface to highlight 

the key performance indicator. 

What is perhaps surprising is that the LCSS algorithm 

appears to perform as well as the LA algorithm although 

it does a worse job of classification (69.7% correct as 

compared with 81.4%). However, the average AUC is 

0.787 for both algorithms indicates a generally high 

quality similarity measure and, although the figures can-

not be directly compared (for the reasons given in sec-

tions 3.1, 3.2 & 3.3), is broadly comparable to the 0.790 

figure for LA in [1]. 

It should not be a surprise that there is such a wide dif-

ference in the Classification Success Rate (CSR). In fact 

CSR is not such a good performance indicator as AUC, 

since essentially it only applies to the nearest neighbour 

(highest similarity) for each query, whereas the AUC 

measures the performance of the similarity measure 

across the entire dataset. Thus, as well as indicating the 

similarity with all other melodies in the tune family, the 

AUC is a better indicator of how the algorithm might per-

form for other melodic similarity tasks, such as search 

and matching. 

4.2 Length normalisation 

Table 2 shows the effect of applying different length 

normalisations to the similarity measure – i.e. when com-

paring two tunes of different lengths, dividing the raw 

similarity score by the minimum, the average and the 

maximum length of the two tunes (of course, if the tunes 

are the same length then these three values are the same). 

As can be seen, this can make a small improvement to 

the results, with minimum length giving the worst results 

and average length the best. Surprisingly here, LCSS 

even outperforms LA. 

 

Algorithm Length 

Avg 

AUC CSR 

SL-LCSS   Min 0.787 0.697 

SL-LA     Min 0.787 0.814 

SL-LCSS   Avg 0.818 0.853 

SL-LA     Avg 0.810 0.872 

SL-LCSS   max 0.818 0.872 

SL-LA     max 0.802 0.883 

Table 2. Results showing the effects of different length 

normalisation (see section 2.2). 

From here on all results use average length as the cho-

sen normalisation, unless otherwise indicated 

4.3 Bar indicators 

Table 3 shows the effect of including bar indicators in the 

representation. As can be seen, bar markers and even bar 

numbers can improve some results significantly, with bar 

numbers being somewhat less effective. This is perhaps 

to be expected; bar numbers tie the bars down to a partic-

ular part of the melody whereas in fact there are known 

instances where the ordering of the phrases may change. 

 

Algorithm 

Bar  

indicators 

Avg 

AUC CSR 

SL-LCSS   none 0.818 0.853 

SL-LA     none 0.810 0.872 

SL-LCSS   markers 0.827 0.853 

SL-LA     markers 0.849 0.911 

SL-LCSS   numbers 0.814 0.853 

SL-LA     numbers 0.846 0.906 

Table 3. Results showing the effects of using bar indica-

tors (see section 2.3). 

Furthermore, with bar markers and average length 

normalisation LA is now seen to give better results than 

LCSS. Again this is to be expected since it is a more so-

phisticated (though computationally costly) algorithm. 

4.4 Recursive sub-sequence alignment 

Table 4 shows the effect of including recursive variants 

of the sub-sequence alignment algorithms, i.e. Recursive 

Local Alignment (RLA) and Recursive Longest Common 

SubString (RLCSS). As can be seen, the crucial feature is 

the use of biased similarity (biased to favour longer 

matches, rather than a series of short matches) which uses 

the 2-norm of the recursive similarity scores (section 

2.4.2); just adding the recursive similarity scores together 

(1-norm) actually makes the recursive results worse than 

the non-recursive versions. 
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Algorithm 

Recursive 

score 

Avg 

AUC CSR 

SL-LCSS   none 0.827 0.853 

SL-LA     none 0.849 0.911 

SL-RLCSS  1-norm 0.813 0.828 

SL-RLA    1-norm 0.842 0.878 

SL-RLCSS  2-norm 0.845 0.889 

SL-RLA    2-norm 0.854 0.914 

Table 4. Results showing the effects of using recursive 

sub-sequence alignment (see section 2.4). 

4.5 Multilevel similarity 

Table 5 presents perhaps the biggest performance en-

hancement which comes from the multilevel similarity 

measure, adding all the similarity scores from all coars-

ened versions of the melody. This significantly improves 

on the single level versions, SL-RLCSS and SL-RLA. 

 

Algorithm Framework Avg AUC CSR 

SL-RLCSS  single level 0.845 0.889 

SL-RLA    single level 0.854 0.914 

ML-RLCSS  multilevel 0.870 0.900 

ML-RLA    multilevel 0.887 0.922 

Table 5. Results showing the effects of using multilevel 

similarity (see section 2.5). 

Note that other experiments were performed to vary 

the weight of the similarity contributions from each level 

(e.g. as suggested in [5], giving greater weight to the finer, 

more accurate representations of the melody). However, 

none of the variants gave consistently better results. 

4.6 Parameter cross-checking 

Finally Tables 6 & 7 provide some cross-checks to fur-

ther validate the results above. Table 6 shows the results 

for the multilevel schemes, using bar markers but with 

different length normalisations (minimum, average & 

maximum). As in section 4.2, the average length is seen 

to give the best normalisation.  

 

Algorithm Length Avg AUC CSR 

ML-RLCSS  Min 0.840 0.811 

ML-RLA    Min 0.865 0.872 

ML-RLCSS  Avg 0.870 0.900 

ML-RLA    Avg 0.887 0.922 

ML-RLCSS  max 0.866 0.900 

ML-RLA    max 0.878 0.917 

Table 6. Results showing the effects of different length 

normalisation for the multilevel algorithms. 

Meanwhile Table 7 shows the results using average 

length normalisation, but comparing bar indicators (no 

indicators, bar markers & bar numbers). As in section 4.3, 

bar markers are seen to give the best results. 

 

Algorithm Indicators Avg AUC CSR 

ML-RLCSS  none 0.880 0.908 

ML-RLA    none 0.883 0.922 

ML-RLCSS  bar markers 0.870 0.900 

ML-RLA    bar markers 0.887 0.922 

ML-RLCSS  bar numbers 0.849 0.883 

ML-RLA    bar numbers 0.868 0.925 

Table 7. Results showing the effects of using bar indica-

tors for the multilevel algorithms. 

4.7 Discussion 

Fig. 1 shows the ROC curves for 4 of the algorithmic var-

iants, the two baseline algorithms (SL-LCSS & SL-LA) 

and the two final algorithms with all four enhancements 

(ML-RLCSS & ML-RLA using average length normali-

sation and bar markers). As can be seen the baseline algo-

rithms have very similar curves with SL-LCSS marginal-

ly worse than SL-LA for smaller values of TPR / FPR (i.e. 

with high similarities) and marginally better at the other 

end of the range. Of the final algorithms, ML-RLA is bet-

ter than ML-RLCSS although their performance is almost 

indistinguishable for larger values of TPR / FPR. 

Note also that although LA versions of the algorithms 

generally outperform LCSS, the LCSS results are of in-

terest because they achieve nearly the same quality and 

are much faster (e.g. in the tests presented here LCSS 

variants are about 1.4 to 1.6 times faster than the LA 

counterparts). 

As mentioned before, the results here are not directly 

comparable with those of Janssen et al., [1], [2] (for the 

reasons given in sections 3.1, 3.2 & 3.3). Nonetheless 

they are of the same order and for example the best AUC 

value presented here (0.887), even without knowledge of 

the tune families, is broadly comparable to the best value 

in [2] (0.893, achieved using a hand-adjusted representa-

tion). It is even possible that by combining some of the 

techniques (e.g. the duration adjustment scheme, [2]) the 

results could be improved still further. 

The results are more directly comparable with those of 

van Kranenburg et al., [3]. Unfortunately the best CSR of 

0.925 presented here does not match the CSR of 0.99 

achieved there and again this argues for further integra-

tion of techniques. 

5. CONCLUSIONS 

This paper has investigated several enhancements to two 

well-established sub-sequence alignment algorithms, in 

the context of their use for melodic similarity and in par-

ticular classification of queries into tune families. It uses 

the annotated dataset from the well-known Meertens 

Tune Collection to provide the ground truth with which 

to evaluate the quality of the algorithms. 

In particular, recursive application of the alignment al-

gorithms applied to a multilevel representation of the 

melodies is shown to be very effective for improving the 

accuracy of the classification. 
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 The other enhancements include length normalisation 

of the similarity measure (which can be tailored accord-

ing to the problem – for example minimum length might 

be more appropriate where all the queries are expected to 

be short phrases but the dataset contains complete melo-

dies). In addition, the use of bar indicators can improve 

the results still further. 

In broad terms, the impact of these enhancements 

(along with other representational variants, e.g. [2]) sug-

gest that sub-sequence alignment (both the local align-

ment version, LA, and the special case, LCSS) are flexi-

ble and robust in terms of how the music is represented 

and how the algorithms are applied. 

Finally it should be stressed that these enhancements 

do not appear to be mutually dependent. In other words, it 

should be possible for other authors to adopt some or all 

of the algorithmic enhancements discussed here to im-

prove melodic similarity algorithm(s), and the ideas 

should be equally applicable to music search and melodic 

matching. 
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Figure 4. The averaged ROC curves for four algorithmic variants: the baseline algorithms and the best variants. 
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ABSTRACT

Automatic singer identification is an essential tool for the or-
ganization of large poorly annotated music collections. For the
particular case of flamenco music, we identify various common
scenarios where the singer label is either incorrect or missing.
We propose an image-based singer identification method for fla-
menco videos using state of the art face recognition technologies.
First, we detect faces in video-frames using the HOG method.
We then determine if a face belongs to the singer by analyzing
the mouth opening. From all faces which are associated with
the singer, we generate an embedding using a pre-trained deep
convolutional network and evaluate against a database containing
labeled singer images. In an experimental setup we obtain a clas-
sification accuracy of 90% which is a promising result compared
to an audio-based baseline method and considering the diversity
of quality and recording scenarios contained in the database.

1. INTRODUCTION

The technologically challenging task of automatic singer
identification is of crucial importance for the automatic in-
dexing of large music databases. For the particular case
of flamenco music there are several frequently occurring
scenarios where the singer in a performance is unknown:
One example can be found in performance videos star-
ring renown dancers, where singers are usually consid-
ered in an accompanying role and in many cases only the
name of the dancer is annotated. However, many respected
singers spent the early years of their career accompany-
ing dancers and discovering such videos could be benefi-
cial for studying the evolution of a singer over time. Fur-
thermore, names are often not unique identifiers in the fla-
menco world. Singers may be referred to by both their
stage name as well as their actual name and related singers,
i.e. father and son, may be referred to by the same name.
In addition, more and more flamenco videos are submitted
to popular multi-purpose video sharing platforms. How-
ever, such platforms do often not require to annotate the
artist performing in the video. As a result, many flamenco
videos are labeled by genre or style only.

Related work on automatic singer identification has so
far been limited to the analysis of audio recordings. Most
approaches have used machine learning models trained on
low-level timbre descriptors (Cai et al., 2011; Tsai & Lee,
2012; Lagrange et al., 2012; Shen et al., 2009; Zhang, 2003),
fundamental frequency trajectories (Fujihara et al., 2010)
or vibrato-related descriptors (Nwe & Li, 2008). Methods
for non-Western music traditions addressing genre-specific
properties and challenges have been developed for carnatic
music (Sridhar & Geetha, 2008), rembetiko (Holzapfel &
Stylianou, 2007) and flamenco (Kroher & Gómez, 2014).

However, spectral distortions in low audio quality audio
recordings and the presence of dominant accompaniment
instruments have shown to limit the performance of audio-
based approaches.

Motivated by the growing amounts of digitally available
audio-visual performance recordings and the challenges de-
scribed above, we present an image-based approach to singer
identification in flamenco videos using state of the art face
recognition technologies. The term face recognition refers
to the task of automatically identifying a person based on
a facial image. Given their non-intrusive nature and low-
cost hardware requirements, face recognition methods are
an essential tool for biometric-based person identification
(Moon, 2004) and surveillance (Burton et al., 1999), and
have furthermore found application in multimedia index-
ing and video thumbnailing (Lee, 2005). For a compete
review we refer the reader to Jafri & Arabnia (2009).

The task of singer identification in music performance
videos encompasses two major challenges: First, we need
to detect the face of the singer despite the presence of var-
ious musicians on stage. Then, we need to determine the
singer’s identity among a number of candidates in an anno-
tated image database. In Section 2 the method is described
in detail, an overview of the dataset used in this study is
given in Section 3 and experimental results are provided in
Section 4. The paper is concluded in Section 5

2. METHOD

An overview of the proposed method is depicted in Fig-
ure 1. First, we train a machine learning model on a set
of annotated frontal images of singers. In each image, we
detect the face bounding box using a state of the art face
detection algorithm and then align all faces to a canonical
pose. Subsequently, we extract a vector of discriminatory
features, called face embedding, from all images. In order
to identify the singer of an unlabeled video file, we first de-
tect all face bounding boxes in each frame. We then decide
if a detected face corresponds to the singer, by extracting
face landmarks and estimating the amount of mouth open-
ing. If the mouth is estimated to be open, we assume that
the face inside the bounding box belongs to the singer and
proceed as in the training stage: We align the face image
and extract its embedding. We compute pair-wise similar-
ities to all instances in the training set and then classify
based on the labels of the most similar images. Finally,
in order to assign a label to the video file, we perform a
weighted voting scheme over all frame-wise estimates and
their confidence values. Below, all processing stages are
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Figure 1: Overview of the processing pipeline.

Figure 2: Image with overlay of its HOG representation.

described in detail.

2.1 Face detection

We apply the histogram of oriented gradients (HOG) method
introduced by Dalal & Triggs (2005) in order to detect
faces in an image. The HOG representation of an image
is generated by computing the brightness gradient for each
pixel and then determining the dominant gradient in cells
of 16x16 pixels. An example is shown in Figure 2. Us-
ing a sliding window with multiple scales, the local HOG
representation can then be evaluated against a pre-trained
model. Here, we used the implementation available in the
dlib library (King, 2009) together with a linear classifier
pre-trained on the labeled faces in the wild (Learned-Miller
et al., 2016) dataset.

2.2 Landmark estimation and alignment

In order to extract pose-invariant features, it is necessary
to align all images to a reference pose. To this extent, we
first crop the image at the estimated bounding box and ap-
ply the method proposed by Kazemi & Sullivan (2014)

Figure 3: (a) original image with face bounding box;
(b) cropped image and face landmarks; (c) cropped and
aligned image.

to detect 68 facial landmarks. Subsequently, a number
of affine transforms are performed to shift the landmarks
corresponding to outer eyes and nose to a reference posi-
tion. The method is implemented in the dlib library (King,
2009). An example of face detection, landmark estimation
and alignment is shown in Figure 3.

2.3 Mouth open detection

In flamenco videos we often encounter, apart from the singer,
various musicians on stage, including guitarists, dancers
and percussionists. Consequently, it is necessary to decide
if a detected face belongs to the singer. Here, we assume
that detected faces with a wide mouth opening are most
likely frontal shots of the singer. Therefore, we compute
the relative distance d between the estimated facial land-
marks corresponding to the center of upper and lower lip,
lup and llow respectively, with respect to the height of the
face bounding box hface:

d =
lup − llow
hface

(1)

An example for d = 0.2 is shown in Figure 4. We exper-
imentally examined the value of d during various singing
passages and determined d > 0.15 as a hard threshold for
detecting a mouth to be open.

2.4 Embedding

The training and evaluation of a machine learning model
for face recognition requires the extraction of representa-
tive features with high discriminatory power. Here, we ex-
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Figure 4: Example of an estimated mouth opening of d =
0.2

tract the so-called face embedding as proposed by Schroff
et al. (2015). This mapping of an input image to 128 fea-
tures was learned using a deep convolutional neural net-
work on the faceSCRUB (Ng & Winkler, 2014) and CA-
SIA webFace (Yi et al., 2014) datasets. Here, we use the
implementation which is available together with the pre-
trained model in the openFace library (Ambos et al., 2016).

2.5 Classification

Given a raw video file, we extract image frames in inter-
vals of one second and generate the embedding of faces
for which the mouth was estimated to be open. We evalu-
ate each of these feature sets against the embeddings of a
labeled database in a weighted k-nearest neighbor (k-NN)
classification scheme (Fix & Hodges Jr, 1951). We chose
the rather simple k-NN method due to the sparsity of the
less than 500 data-points in the 128-dimensional feature
space and the fact that extracted embeddings lie on an Eu-
clidean space where distances are directly proportional to
face similarity.

For a given detected open-mouth face fi we initialize
the confidence vector c(fi) = [cfi=1, cfi=2, ..., cfi=M ] with
zeros, where M denotes the number of ground truth classes.
We add the the value 1/k to the element corresponding to
the annotated class of the kth neighbor.

Let F = {f1, f2, ..., fN} be the set of N detected open-
mouth faces and c(fi) holds the confidence values cfi=j of
frame fi belonging to class j. The accumulated confidence
cj for class j results to

cj =
N∑
i=1

cfi=j (2)

and the label l is finally assigned as

l = argmax
j

cj . (3)

3. DATA

3.1 Annotated image collection

In the scope of this study we gathered training dataset con-
taining images of flamenco singers. For 10 singers, 3 fe-

male and 7 male, we gathered 50 publicly available im-
ages each. Images in which no face was detected were
discarded, leaving a total of 478 images in the training set.

3.2 Video collection

We gathered a total of 30 videos, 3 videos of each singer
in the training database. All videos were taken from online
video sharing platforms and apart from the singer at least
one more person is seen on stage. The quality ranges from
amateur mobile recordings to professional video clip and
live performance recording productions. The contained
material includes live concerts, private gatherings, excerpts
taken from documentaries and music videos.

3.3 Baseline audio collection

In order to compare our approach to state of the art audio-
based singer identification methods (Section 4.1), we gath-
ered an additional 10 audio tracks for each singer. The
recordings were taken partly from the CorpusCOFLA (Kro-
her et al., 2016) database and partly from private collec-
tions.

4. EXPERIMENTAL EVALUATION

4.1 Baseline method

State of the art audio-based singer identification methods,
i.e. Zhang (2003) and Tsai & Lee (2012) follow a com-
mon processing framework: A machine learning model is
trained on audio descriptors extracted frame-wise from an
annotated database. For each frame in the unlabeled audio
recording, the same features are extracted and evaluated
against the learned model. Finally, the label is assigned
based on a majority vote among the frame classifications.

Here, we implemented a baseline approach following
this framework. From the annotated recordings in the au-
dio training database, we first extract singing voice seg-
ments using an unsupervised method proposed by Pikrakis
et al. (2016), which has given reliable results for flamenco
recordings. From these segments we then extract the mel-
frequency cepstral coefficients (MFCCs) in non-overlapping
windows of 50ms length.

As in Zhang (2003), we train a Gaussian mixture model
(GMM) for each singer and investigate different values for
the number of components C. In the test stage, we extract
the same features from the audio track of each unlabeled
video, evaluate against the pre-trained GMMs and assign a
label based on majority vote over all frames.

4.2 Results

The results of the experimental evaluation by means of cor-
rectly classified instances are shown in Table 1. The audio-
based baseline method achieves 73.3% classification accu-
racy among the 10 candidates in the dataset. This is in line
with the results reported in Kroher & Gómez (2014) where
86.7% were achieved among 5 candidates. The proposed
image-based approach achieves a significantly higher ac-
curacy of 90% for all investigated values for k.
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classifier accuracy
baseline, C = 2 66.7%
baseline, C = 4 73.3%
baseline, C = 8 70.0%
proposed, k = 1 90.0%
proposed, k = 3 90.0%
proposed, k = 5 90.0%

Table 1: Experimental results for audio- and video-based
singer identification.

5. CONCLUSIONS

We presented an image-based singer identification system
for flamenco videos. We use state of the art image process-
ing techniques to detect faces in video frames and decide
based on facial landmarks if a detected face belongs to the
singer. Using a learned feature representation, we compare
the resulting face images against a dataset and assign a la-
bel based on the labels of the nearest neighbors. An experi-
mental evaluation has shown that the method gives promis-
ing results compared to an audio-based baseline method
and consequently, the video contains valuable information
for identifying the singer.

Future work can further explore the potential of image
processing for music analysis in various ways: The pro-
cess of gathering singer images can be automated through
the use of web mining techniques. Furthermore, the de-
tected sequences showing the singer’s face can be used for
emotion recognition or video thumbnail generation. In ad-
dition, hybrid approaches to singer identification combin-
ing both, audio and video features, could be explored.
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ABSTRACT

This paper explores the relevance/importance of transitions in
improvisational decorations to understand the nature of flows in
Hindustani music. Hindustani Music is fundamentally improvisa-
tional in nature. The artist’s main objective is to evoke the mood
of the rga (melodic-mode) and this is achieved with the delicate
explorations of flourishes and decorations. Music is cognitively
associated with these decorations instead of the actual underlying
notes. These decorations along with the varied methods of artic-
ulating notes together constitute flows. We call them flows due to
the movement/change in the frequency/amplitude domains and
they are mainly characterized by the rate/nature of change. We
show that the sequences of change are fundamental to the idea
of flows. We represent them by the first derivative and second
derivative of a combination of frequency and amplitude data and
then cluster them based on a custom defined distance. We suc-
cessfully run spectral clustering on a pairwise affinity matrix and
achieve an accuracy of 81% in distinguishing between Murki vs
Kan and 84.5% in Andolan vs Ghaseet. We thus develop a novel
method of content based music analysis which has applications
in music search, recommendation, retrieval and pedagogy.

1. INTRODUCTION

In Hindustani music improvisation is of paramount impor-
tance. The artist has a lot of freedom with which he ren-
ders the performance by using his own style of articulating
notes and melodic patterns. Bhatkhande (1934); Bagchee
(1998) In fact an artist is also judged by his ability to im-
provise well. These improvisations are mainly done us-
ing various alankaar and alankaran. Mukerji (2014) These
can vary from singing a group of notes that express the
meaning (bhava) of the raga to the manner of articulation
of notes. For instance, execution of notes with a certain
amount of shaking or a smooth transition from one note to
another while touching other microtones.

Every performance in Hindustani Music is based on a
melodic mode (raga). Bagchee (1998) Each raga can evoke
a harmonious aesthetic state given that there is a proper
rendering of notes and the improvisation is aesthetically
sound. Cognitively raagas are associated with these deco-
rations. These along with the ways in which notes are ap-
proached, sustained and quitted constitute flows. We call
them flows due to the constant change in the frequency
and amplitude domains. These flows are a prominent part
of a performance and vary from performer to performer.
In this paper we want to capture the importance of rate
of change in frequency and amplitude domains to concep-
tualize flows. We do this by clustering known groups of
alankaaran (one type of flow) based on a custom distance.

Figure 1: Flowchart of the complete procedure.

This distance compares the sequences of first derivatives
and second derivatives of a combination of frequency and
amplitude data. The affinity/similarity between two flows
is more when there is less distance between the sequences
of change. We verify this hypothesis by first creating a
pairwise distance matrix, then we use a heat kernel to con-
vert this into an affinity matrix on which we run a spectral
clustering algorithm. Since we know the types of flows in
the given dataset we then verify if similar flows are being
grouped into the correct known labels. We also try to find
representative exemplars within these flows by later run-
ning the affinity propagation algorithm. The various steps
involved in the procedure are shown in figure 1.

2. BACKGROUND

Alankaaran (an act of Ornamentation) is constituted by
alankaar, gamak, sthaya and kaaku. Mukerji (2014) A spe-
cific group of notes that get its meaning in context of a
musical phrase are known as alankaar. Gamak is the execu-
tion of notes with a certain amount of shaking. Sthaya is a
combination of a certain notes of the raga which expresses
a certain emotion of the raga. Lastly, Kaaku refers to the
manner of articulating a particular note. Mukerji (2014)
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These are the different modes in which Alankaaran can be
achieved. We are interested in those modes of alankaaran
which involve fair bit of improvisation and are specific to
the performer/music style. Alankaar further consists of
Varnaalankaar, Chhandalankaar, Varnatiriktaalankaar and
Vadanbheda. Varnaalankaar are alankaars using groups of
notes. When note-groups are used in rhythmic patterns
Chhandalankaar arises. When alankaaran is achieved by
creating variations in the articulation of notes, varnatirik-
talankaar is achieved. Mukerji (2014) In this paper we
mainly focus on these kinds of alankaars. We particularly
focus on Murki, Kan, Andolan, Meends and Ghaseet.

1. Murki: A murki is cluster of notes that sounds like a
short, subtle taan. It is a fast and delicate ornamen-
tation employing two or more notes. Mukerji (2014)

2. Kan: Kan are the linking or grace notes. They are
played in a very subtle manner. Mukerji (2014)

3. Andolan: The Andolan alankar is a gentle swing or
oscillation that starts from a fixed note and touches
the periphery of an adjacent note. Mukerji (2014)

4. Meend: Meend refers to the glissando or a glide in
the wave from one note to another. Mukerji (2014)

5. Ghaseet: This is a kind of meend specific to stringed
instruments. While its literal meaning translates to
pull, it usually refers to a fast glide. Mukerji (2014)

North Indian classical music is not a staccato form and
the transitions between notes are of utmost importance.
The variations brought about in the rendering of notes such
as: 1.) gentle oscillations, 2.) subtle increase/decrease
in volume/speed, 3.) sudden variation in volume/speed,
4.) sustenance on one particular note for long, 5.) touch-
ing micro-tonal shrutis whilst performing alankaaran etc.
are instrumental to the performance and are representa-
tive of the style of music. Cognitively we associate a par-
ticular performance with these improvisations and meth-
ods of articulation. More specifically, we associate music
with such melodic patterns. These melodic patterns in-
volving different methods of articulation of notes, transi-
tions between notes and improvisational motifs constitute
flows. Flows are characterised by rate of change. For in-
stance, in a ghaseet there is a rapid change in frequency in
a short interval of time since multiple micro-tonal shrutis
are touched sequentially. Mukerji (2014) Whereas, in a
krintan the change is more subtle. In mathematical terms
flows can be understood by looking at the derivative of the
signal in frequency/amplitude domains. In this paper we
try to capture the change in frequency and amplitude do-
main together since there is a constant change in both the
frequency and the amplitude domain when a musician is
trying to achieve alankaaran. For instance, when andolan
is being performed, the musician gently touches the pe-
riphery of other notes. Thus along with a change in the
frequency domain there is also a notable change in the am-
plitude. Hence, we look at the first/second derivative of
amplitude weighted frequency data.

3. RELATED WORK

Most of the earlier work done in the field of ornament anal-
ysis use some or the other variant of pitch tracking. In
Pratyush (2010), Pratyush uses time series matching to find
the distance between two ornaments which are represented
by its pitch sequence. The results shown here are highly
questionable because the dataset is smaller than a hundred
samples and it has very little variety. In S. S. Miryala
& Choudhury (2013), an algorithm is proposed for auto-
matic transcription, using line fitting to obtain canonical
representation of pitch curves in terms of straight lines and
points of inflection and then using template matching to
identify vocal expressions. However, the algorithm often
fails to distinguish between steady notes and glides. Also,
the templates used are not exhaustive, they dont cover a lot
of variety of ornaments. Gupta & Rao. (2012) proposed
objective methods to assess the quality of ornamentation
in Indian music performed by a singer. They take into ac-
count an ideal singer as a model or reference and com-
pare reference meends with the meends sung by different
singers on the basis of (i) point to point error calculation;
(ii) Dynamic time warping and (iii) polynomial curve fit
based matching.

Narayan & Singh (2014) use iterative template match-
ing to detect ornaments in Dhrupad, a variant of North
Indian Classical Music. This study again is heavily de-
pendent on the templates being used. The intrinsic rate
of change properties of ornaments are not being captured.
Time warping in general has been the distance measure
used to compare time dependent sequences. Gulati et al.
(2016); Joe Cheri Ross & Rao (2012) In Narayan & Singh
(2015) they build on a model to study the consonance of
notes being used in various alankaar. Joe Cheri Ross &
Rao (2012) propose various similarity metrics to detect
melodic motifs in Hindustani music. Along with the con-
ventional DTW they also use piecewise aggregate approx-
imation to convert a non uniform length time series to a
uniform length dimension reduced sequence of symbols.
A given time series is aggregated into uniform W length
sequences and Euclidean distance is used as the similarity
measure.

Gulati (2016), develops computational approaches for
analyzing high-level melodic aspects of music performances
in Indian art music. For extracting melodic features he uses
the Melodia pitch tracking algorithm and ignores the en-
ergy and velocity information. Gulati (2016) ignores the
importance of these factors in representation of melodic
patterns or ornaments. He then uses normalized and er-
ror corrected pitch tracked information along with DTW
for mining patterns. To identify musically meaningful pat-
terns, he exploits the relationships between the discovered
patterns by performing a network analysis, exploiting the
topological properties of the network. Gulati (2016) recog-
nises that these patterns are the building blocks of melodic
structures in both improvisation and composition. Thus,
that they are fundamental to the description of audio col-
lections. He also recognizes that it is important to identify
these patterns for interacting with large volumes of audio
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recordings, and for developing novel tools to facilitate mu-
sic pedagogy.

The true nature of ornaments is that they are specific
to the performer and vary a lot from performer to per-
former and style to style. The nature of rate of change
cannot be captured just by looking at the pitch tracking in-
formation, not just because it ignores the energy changes
but also because there might be subtler changes in the par-
tials/overtones of fundamental frequency which might hold
a lot of importance in understanding the rate of change in
ornament based and other flows. This is the biggest dif-
ference between the approach in this paper and any of the
recent work done in the field of ornament analysis.

4. FEATURE EXTRACTION

In this section we will discuss about the various steps in-
volved in representing flows in mathematical terms. As
discussed earlier a flow can be mathematically expressed
as the first/second derivative of the frequency/amplitude
data. In this paper we mainly are interested in certain or-
naments for the study of flows. We have recorded various
ornaments played on sitar and stored them as separate or-
nament flows. Now that the flows have been recorded we
initially compute their spectrograms. Spectrograms can be
used as a way of visualizing the change of a non-stationary
signals frequency content over time. Since we are inter-
ested in looking at the changes at a sub-second level we
look at the frequency content at every hundred millisecond
window. The audio files are sampled at 44100 Hz, so we
consider the length of each segment to be 4410 samples.

After the spectrograms have been created, we are in-
terested in finding the first and second derivatives of fre-
quency and amplitude content. We approximate the calcu-
lation of derivatives by computing delta and double deltas.
As discussed earlier, during the act of ornamentation there
are changes both in frequency and amplitude content at
once. To capture this dependence of frequency and am-
plitude while computing the derivatives, we dont look at
frequency and amplitude separately but take a product of
frequency and amplitude. Then we compute the deriva-
tives of this combined measure. We have thus chosen this
measure over a linear combination of frequency and ampli-
tude content. To make the idea clearer lets take an exam-
ple of a flow X, whose spectrogram has been computed. X
has frequencies in the range (Fmin, Fmax) and in each 100
ms time window these frequencies can have varying en-
ergy content ranging from (0, Emax). Now lets say in the
first window F has the highest energy content E. We com-
pute sqrt(+E)*F and call this combined measure C which
stores the product for the highest energy frequency in the
first window. Now we go to the next time window and
compute C by looking at the maximum energy frequency
and amplitude. Then D1 is the difference between C in
time window 2 and 1. Similarly computing for all time
windows we get sequences of deltas for the highest energy
frequency (D1, D2). If there are n time instances then we
have the delta sequence of length n-1. These sequences are
then calculated for the next highest power frequencies. At

the end of this, each flow will have n sequences of deltas
wherein n is the total number of frequency components in
the spectrogram. Similarly we compute the second deriva-
tives from the first derivative data. For an n length first
delta sequence we get a n-1 length second derivative se-
quence. Here again we have n second derivative sequences
for n number of frequency components in the spectrogram
of the flow being considered. In conclusion, a flow which
has n frequency components and t time windows can be
represented by two sequences: n first derivative sequences
and n second derivative sequences, of length t-1 and t-2
respectively.

5. DISTANCE MEASURE

Now that we have sequences of change representing the
flows given, we come up with a distance metric to identify
the similarity between two flows. Fundamentally to com-
pare two time sequences the most commonly used idea is
that of Dynamic Time Warping. Dynamic Time Warping
is a dynamic programming algorithm which tries to find an
optimal alignment between two time domain sequences.
Mller (2007) Since we are interested in capturing the sim-
ilarity between sequences of change this is suitable for our
problem. Consider two time domain sequences X = [x1,
x2...xM] and Y = [y1, y2...yN]. Evaluating the local cost
between each pair of X and Y we obtain a distance ma-
trix D(X, Y). Using this matrix we try to find the optimal
alignment using the recursive formula:

D(i, j) = d(i, j) +min(D(i, j − 1),

D(i− 1, j), D(i− 1, j − 1)) (1)

Here d(i,j) is the local cost measure between Xi and
Yj. We use Euclidean distance as our local cost measure.
D(M,N) now stores the value of the optimal alignment.
Now that we have established a metric to find the distance
between two time varying sequences lets integrate it into
our setting of multiple sequence representation.

Lets consider that we have two flows X and Y. X has
n1 sequences of first derivative data. Y has n2 sequences
of first derivative data. The difference is number of se-
quences is due to the varying frequency content in both the
sequences. Thus we only look at top k sequences which
correspond to sequences of top k highest energy frequen-
cies in the spectrogram. So for top K highest power fre-
quencies the first derivative distance between two flows
can be given by:

FDdist = EuclideanNorm(1st− distance,

..ith− distance, ..kth− distance) (2)

Wherein, to compute the ith-distance we compare the
ith sequence of X with ith sequence of Y using the earlier
defined Dynamic Time Warping algorithm. Similarly the

Proceedings of the 7th International Workshop on Folk Music Analysis, 14-16 June 2017, Málaga (SPAIN) 
ISBN: 978-84-697-2303-6

95



second derivative distance between two flows can be given
by:

SDdist = EuclideanNorm(1st− distance,

..ith− distance, ..kth− distance) (3)

Where to compute the ith-distance we compare the ith
second derivative sequence of X with ith second derivative
sequence of Y. The total distance between two flows can
then be given as:

Dist(X,Y ) = FDdist+ SDdist (4)

Where Dist(X,Y) is the distance between two flows X
and Y.

6. CLUSTERING

Since the distance metric between two flows has been es-
tablished we can now perform clustering to check how well
we can group the flows into their known labels. If we have
n number of flows in our dataset we construct a nxn matrix
of pairwise distances. We had initially run the K-Medoids
clustering on this distance matrix to find that the cluster-
ing on distance wasnt very good. Kaufman & Rousseeuw
(1987) Therefore now we construct an affinity matrix out
of the distance matrix using a heat kernel, on which we
can run the spectral clustering algorithm. In the context of
clustering, an affinity measure is just the converse of a dis-
tance i.e. a distance of 0 means highest affinity. If values
in the affinity matrix are not well distributed the spectral
problem will be singular and not solvable. Thus we apply
the below heat kernel on the given distance matrix:

similarity = np.exp(
−beta ∗ distance
distance.std()

) (5)

where np is the numpy library in python. It can be approx-
imated as:

similarity = np.exp(
−distance2

(2. ∗ (distance.max()−
distance.min())2)) (6)

6.1 Spectral Clustering

The goal of spectral clustering is to cluster data that is con-
nected but not necessarily compact or clustered within con-
vex boundaries. Ng et al. (2001) It is efficient if the affin-
ity matrix is sparse. It needs us to specify the number of
clusters upfront and works well for small number of clus-
ters. For two clusters, it solves a convex relaxation of the
normalised cuts problem on the similarity graph. In scikit-
learn spectral clustering does a low-dimension embedding

of the affinity matrix between samples, followed by a K-
Means in the low dimensional space. Steps involved in
this type of clustering:

1. First we construct an affinity matrix A.

2. Then we construct the graph Laplacian from A. There
are many ways to define a Laplacian. Normalized,
generalised, relaxed etc.

3. Compute eigenvalues and eigenvectors of the ma-
trix. Each eigenvector provides information about
the connectivity of the graph. The idea of spectral
clustering is to cluster the points using these ”k”
eigenvectors as features.

4. Map each point to a lower dimensional representa-
tion based on the computed eigenvectors.

5. Assign points to clusters based on the new represen-
tation.

In this we essentially try to find a transformation of our
original space so that we can better represent manifold dis-
tances for some manifold that the data is assumed to lie on.
Ng et al. (2001) When the data is projected into a lower di-
mensional space it makes the data easily separable and thus
the clustering algorithm works. However, this still retains
many properties of K-means since after we find a low di-
mensional embedding, we run the K-means algorithm. But
the fact that we should know the labels before hand is not a
problem for us since we have a labeled data-set. However
within these labeled flows as well, there might be other
intra clusters which we arent aware of because of the sub-
tle nature of variations present in the flows. Thus we also
try to find these smaller groups and representative exem-
plars by running the affinity propagation algorithm. Dueck
(2007) Spectral clustering works wells for us also because
the size of the data-set is small enough. If there were items
in our data-set in the order of 105 then we would have to
construct an affinity matrix of size 1010 which would bloat
up the main memory.

6.2 Affinity Propagation

Affinity propagation is a clustering algorithm which doesn’t
need any predefined number of clusters to be given as in-
put. It finds the exemplars which are representative of the
clusters in the data-set. Dueck (2007) It views each data
point as a node in a network, and recursively transmits real-
valued messages along edges of the network. This is done
until a good set of exemplars and corresponding clusters
emerges. These messages are updated on the basis of for-
mulas that search for minima of a chosen energy function.
The magnitude of each message reflects the current affinity
that one data point has for choosing another data point as
its exemplar.

This method takes as input a real number s(k, k) for
each data point k so that data points with larger values of
s(k, k) are more likely to be chosen as exemplars. The
number of identified clusters is influenced by the values of
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the input preferences. It is also affected by the message-
passing procedure. The algorithm proceeds by alternating
two message passing steps, to update the responsibility and
the availability matrices. The responsibility matrix has val-
ues r(i, k) that reflect how well-suited xk is to serve as the
exemplar for xi, relative to other candidate exemplars for
xi. The availability matrix has values a(i, k) that reflects ac-
cumulated evidence as to how well-suited it would be for
xi to pick xk as exemplar, taking into account the support
from other points preference for xk as an exemplar. These
matrices can be seen as log probability ratios.

Initially the availability is zero and then responsibilities
are updated by the rule:

r(i, k)← s(i, k)−max{a(i, k′) + s(i, k′)},
where k′ s.t. k′ 6= k (7)

Then the availability is updated as follows:

a(i, k)← min{0, r(k, k)+∑
i′3{i,k}

max{0, r(i′, k)}}for i 6= k and (8)

a(k, k) =
∑
i′ 6=k

max(0, r(i′, k)) (9)

The iterations are performed until convergence, at which
point the final exemplars are chosen, and hence the final
clustering is given. Dueck (2007) The data points whose
responsibility+availability is positive are chosen as exem-
plars.

7. RESULTS

Our data-set consists of few hundreds of samples of orna-
ment flows comprising of Murki, Kan, Andolan, Ghaseet
(type of meend). These ornaments were performed in dif-
ferent ragas to create a comprehensive data-set. The orna-
ments were performed in ragas: Malhar, Marwa, Mishra
Piloo, Bhagyashree and Yaman. We test the validity of the
distance metric and our representation by first performing
spectral clustering and then running the affinity propaga-
tion algorithm. We first look at accuracy as the perfor-
mance evaluation metric. Accuracy is given by:

Accuracy =
tp+ tn

tp+ fp+ tn+ fn
(10)

where tp = true positive, tn = true negative, fp = false pos-
itive, fn = false negative We find that the accuracy of clus-
tering Murki and Kan by giving a predefined k equal to
2 is 0.81, i.e, the clustering algorithm correctly clustered
murki and kan into their respective groups in 81% of the
cases. The accuracy of clustering Andolan and Ghaseet in
a similar fashion is 0.84. These accuracies are very high
considering that in our data-set of ornaments we had a va-
riety not just in terms of ragas but also in the articulation

of these ornaments. For instance, our kan data-set has both
two note and three note variants. The length of the or-
naments in our data-set are also varied ranging from one
second to many seconds. This shows the suitability of our
distance metric and representation for varying length orna-
ments. We compare Murki/Kan and Andolan/Ghaseet be-
cause they are fairly different and they usually dont occur
together. In general musicians tend to combine andolan
and murki in performance. Even ghaseet co-occurs with
murki and andolan sometimes.

The Fowlkes-Mallows score FMI is defined as the geo-
metric mean of the pairwise precision and recall. Fowkles
& Mallows (1983) It ranges from 0 to 1 and high score in-
dicates good similarity between clusters. Perfect labeling
has a score of 1.0. FMI is given by:

FMI =
TP√

(TP + FP )(TP + FN)
(11)

where TP = True Positives, FP = False Positives, FN =
False Negatives

FMI scores of 0.70 and 0.77 indicate that the precision
and recall of our clustering is also very good. The values
corresponding to performance evaluation metrics shown in
Table 1 prove that the representation and distance metric
have performed well in grouping similar flows together.

However we also test the legitimacy of our clustering
by other metrics as well. Adjusted rand index (ARI) Hu-
bert & Arabie (1985) is the number of pairs of objects that
are either in the same group or in different groups in both
partitions divided by the total number of pairs of objects.
It ranges from -1 to 1 and a positive score indicates similar
clustering.

ARI =
RI − E[RI]

max(RI)− E[RI]
(12)

where RI is the rand index. The raw rand index is given
by:

RI =
a+ b

C
(13)

where a = the number of pairs of elements that are in
the same set in ground truth and in actual labels, b = the
number of pairs of elements that are not in the same set in
ground truth and in actual labels, C = is the total number
of possible pairs in the dataset.

The ARI is positive and reasonably high for both clus-
tering experiments. Higher ARI shows that the partitions
are in agreement with each other. ARI is larger for the case
of Andolan vs Ghaseet.

The Mutual Information Strehl & Ghosh (2002) is a
function that measures the agreement of the two assign-
ments, ignoring permutations. Bad/Independent labellings
have negative scores. The calculated value of the mutual
information is not adjusted for chance and will tend to in-
crease as the number of different labels (clusters) increases,
regardless of the actual amount of mutual information be-
tween the label assignments. Given that we just have two
labels this is not a very good metric to assess our results.
However a positive score is a good indicator.
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Murki vs Kan Accuracy 0.81
Fowlkes Mallows Score 0.70
Adjusted Rand Index 0.66
Adjusted Mutual 0.46
Information Score
Homogeneity 0.47
Completeness 0.48
V-measure 0.47

Andolan vs Ghaseet Accuracy 0.84
Fowlkes Mallows Score 0.77
Adjusted Rand Index 0.75
Adjusted Mutual 0.51
Information Score
Homogeneity 0.52
Completeness 0.54
V-measure 0.53

Table 1: Table containing values corresponding to various
clustering metrics to validate the quality of spectral clus-
tering.

Given that we have the knowledge of the ground truth
class assignments, it is possible to define some intuitive
metric using conditional entropy analysis. Homogeneity
tells whether each cluster contains only members of a sin-
gle class, while Completeness tells whether all members
of a given class are assigned to the same cluster. Rosen-
berg & Hirschberg (2007) We observe that the homogene-
ity and completeness scores are low, which implies that
there is a little bit of overlap in clustering. But since these
functions increase at the pace of the logarithmic function,
the numbers might improve significantly with more sam-
ples or clusters. V-measure or the harmonic mean is ac-
tually equivalent to the mutual information normalized by
the sum of the label entropies. Rosenberg & Hirschberg
(2007) Previously an analysis has been done on the impact
of the number of clusters and number of samples on these
metrics dependent on conditional entropy. scikit-learn de-
velopers (scikit-learn developers) The observation is that
the values of these metrics increase significantly with in-
crease in number of samples and the number of clusters.
Since our dataset is quite small these metrics can be ig-
nored. For small sample sizes or number of clusters it is
safer to use an adjusted index such as the Adjusted Rand
Index (ARI).

To verify the results of the affinity propagation algo-
rithm we look at the silhouette coefficient. Rousseeuw
(1987) Higher the value implies better the clustering as-
signments. The Silhouette Coefficient Rousseeuw (1987)
is defined for each sample and is composed of two scores a:
The mean distance between a sample and all other points
in the same class. and b: The mean distance between a
sample and all other points in the next nearest cluster. The
Silhouette Coefficient s for a single sample is then given
as:

Murki vs Kan Number of Clusters 15
Silhouette Coefficient 0.65

Andolan vs Ghaseet Number of Clusters 13
Silhouette Coefficient 0.75

Table 2: Table containing the values corresponding to met-
rics of affinity propagation.

s =
(b− a)

max(a, b)
(14)

The exemplars (centers) extracted by this algorithm have
been verified and have proven to show distinct musical sig-
nificance.

8. CONCLUSIONS

We have shown that the property of rate of change is fun-
damental to the idea of flows and can be represented by the
first derivative and second derivative data. We were able to
achieve very high clustering accuracies by using this rep-
resentation and our custom defined distance measure. We
achieved an accuracy of 81% in distinguishing between
Murki vs Kan and 84.5% in Andolan vs Ghaseet. This
again shows that transition is at the heart of the definition
of flows and ornaments. However we have not compared
some other flows such as the approaching of notes/quitting
of notes separately across performances. Further study
could take up only looking at patterns between these types
of flows across individual performers and gharanas. Since
this dataset is still very small, a comprehensive dataset can
be built to check for the exhaustiveness of this hypothesis.

In this paper we have just looked at one combination of
frequency and amplitude data. Many other combinations
can be explored to find the correct dependence. This can
further lead to different representations of flows.

This theory of rate of change might be suitable for any
other form of monophonic music as well where melody
plays a major role. The transitional nature of melodic phrases
can be expressed using a similar representation based out
first and second derivative data. This type of content based
audio analysis plays a prominent role in interacting with
large volumes of audio recordings and also for developing
novel tools to facilitate music pedagogy. It can have appli-
cations in music information retrieval, search and recom-
mendation systems as well.
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ABSTRACT 
 
The aim of source separation of polyphonic music is to obtain 
one track per musical instrument. Source separation of musical 
performances is a notoriously difficult problem because the in-
struments commonly overlap both in time and frequency. Span-
ish folk music can be very challenging to separate due to the large 
number of ornaments, musical flourishes, and dynamics. Addi-
tionally, each performance also can be different from the general 
score depending on expressivity, interpretation, arrangement, 
among other factors. In this paper, we propose to use prior infor-
mation from the score to improve the separation of recordings of 
Spanish folklore music into isolated musical instruments, each 
playing a different voice. We use the MIDI score to synthesize a 
first approximation of the musical performance. Then, the syn-
thesized data is aligned with the recording of the performance 
using Dynamic Time Warping (DTW). Finally, the time-aligned 
approximation is used as the prior model in a Probabilistic Latent 
Component Analysis (PLCA), which separates the recording into 
different instrumental tracks. This model provides us a good prior 
reconstruction of the real instrument, as well as a fit of the onsets 
and musical ornaments. 

1. INTRODUCTION 

Source Separation has always been a major challenge in 
constant improvement. In various applications (as remix-
ing, sampling or academic needs), isolated instruments or 
sounds from recorded mixtures have been required. Espe-
cially in Spanish Folk Music, playing with an entire band 
is more appropiate for practicing, so, using voices from 
real recordings is useful for musical education. MIDI 
scores are now a very abundant material, easy to process 
and from which we can extract a lot of general information 
about a musical piece, such as the pitch, intensity or dura-
tion of each note, as well as the different voices that per-
form each instrument.   
 

Therefore, although there are methods that start from 
the premise of not knowing information of the piece called 
blind methods [1, 2, 4, 11, 12], many of the methods of 
separation of sources make use of this previous infor-
mation to guide the separation. Every performance of the 
same musical piece varies from the score in terms of dy-
namics, tempo and notes duration. Among other factors, 
these microvariations in performance can be attributed to 
expressiveness. It has been a researching object in Music 
Information Retrieval last years to correct the music rep-

resentation, having a representation that correspond ex-
actly with the recording. In [6, 7], the authors propose us-
ing Dynamic Time Warping (DTW) to align polyphonic 
music to scores using a measure called Peak Structure Dis-
tance (PSD), which is derived from the spectrum of audio 
and from synthetic spectra computed from score data. In 
recent years, a growing number of source separation 
methods based on spectral decomposition have been 
proposed. Prior information obtained from the score could 
be used in many forms. In Soundprism [14], the score 
guides the creation of harmonic filters for each source. One 
of the most used methods in spectrogram decomposition is 
the Non-Negative Matrix Factorization, that provides time 
activations and frequency components that are used to re-
construct the separate signals [9, 10]. NMF is also used as 
a Blind Source Separation method [1, 4]. The Probabilistic 
Latent Component Analysis (PLCA) is another factoriza-
tion method, equivalent to the NMF, but with a probabil-
istic iterative vision of the computation of time-frequency 
components [3, 5, 8, 13]. The components are modeled to 
the real recording using an Expectation-Maximization al-
gorithm.  
 
 In this work, we propose to use synthesized tracks from 
the MIDI score as priors to build time activations and fre-
quency spectra for each voice in a PLCA model. Every 
component of every track will be adapted to the real mix-
ture, so we know upon convergence which components be-
long to which reconstructed instrument. Soloist instru-
ments in Spanish Music as Piano or Classical Guitar have 
fast notes and strumming chords. Generating a good prior 
timbral approximation of the instruments, we will compute 
the reconstructed instruments easily. Usually, the melodies 
in Spanish Folk Music rely heavily on musical flourishes 
such as vibrato, shakes, grupetto, etc. and performance 
variations resulting from expressiveness or interpretation, 
for example. Thus, PLCA allows to adapt the ideal prior 
synthesis to the real sound, adjusting the time-frequency 
variations present in the performance that are not indicated 
in the score. 
 

The paper is organized as follows. In section 3 we de-
scribe the PLCA algorithm proposed in a general form by 
[8]. Section 4 explain how we use the score and the syn-
thesis in the process of separation, and in section 5 we ex-
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plain the final point of source extraction. Finally, we de-
scribe our particular example in section 6, and use the 
method to extract a flamenco guitar from a real recording, 
explaining possible improvements and future in section 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1. An Overview of the method. 
 
 

2. OVERVIEW OF THE METHOD 

An overview of the complete method is shown in Fig. 1. 
First, the MIDI score is time-aligned to an audio rendition 
of the piece using DTW. Then, we compute its spectro-
gram (Fsj), and we decompose it using a random-initial-
ized PLCA (1st PLCA), obtaining a combination of 1-di-
mension marginal distributions in time and frequency, that 
are modeled to the real spectrogram (F) initializing a 2nd 
PLCA [3]. The reconstructed source spectrogram is a re-
sult of the product a sum of the final components.  

3. PLCA 

The Probabilistic Latent Component Analysis is an itera-
tive method that allows the decomposition of an N-dimen-
sional distribution of the random variable X = {x1, x2, ..., 
xN}. The result of this probabilistic model is a mixture of 
non-negative marginal distribution (1 dimension), whose 
products recompose the N-dimensional distribution [5, 8]. 
 
3.1. 2D-PLCA General Model 
 
A spectrogram from audio data can be considered a histo-
gram (2-dimensional) distribution over time and fre-
quency. So, the real spectrogram could be analyzed as a 
non-normalized probabilistic distribution. We separate the 
2-dimensional spectrogram into time marginal distribu-
tions and frequency marginal distributions, and the origi-
nal 2-dimensional distribution is the product between the 
components of each dimension.  
 

So, in audio and music terms, we can say that each mar-
ginal distribution is a part of the complete piece. For ex-
ample, a frequency distribution could correspond to a uni-
tary musical note, and the corresponding time distribution 
represents the activation and dynamic of the note. 
 

Then, the reconstruction of the decomposed spectro-
gram: 
 

 
𝐹	 = 𝑃(𝑧)𝑃(𝑓|𝑧)𝑃(𝑡|𝑧)+

,
                  (1) 

 
 

Where F is the reconstructed spectrogram, z is a latent 
variable (each time-frequency component), K is the num-
ber of marginal distribution in each dimension and P(f|z) 
and P(t|z) are the z marginal 1-D distribution in freq./time. 
P(z) only contains the weight of the product z in the total 
mixture. We have a P(f|z) and P(t|z) product for each var-
iable z, see Fig. 2. 
 

We perform an iterative Expectation-Maximization al-
gorithm to compute the marginal distributions and obtain 
a converging result. The prior marginal distributions could 
be pre-trained marginals, or we can decompose from zero 
additional information by initializing random distributions 
(uniform probability). 
 

So, in each iteration: 
 

• Expectation: We compute the contribution of 
each the component z (from first to K) to the real 
mixture 𝐹-,/. 

 
𝑅(𝑧|𝑓, 𝑡) = 1(2)1(-|2)1(/|2)

3(,4)3(5|,4)3(6|,4)7
,4

               (2) 

 
 

• Maximization: We use this contribution to re-es-
timate the new marginal distributions, that are 
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closer to the real original spectrogram. We have 
a first step (components denoted by (*)). When 
the weights P(z) are computed, we calculate de 
definitive f/t marginals. 

 
𝑃∗(𝑓|𝑧) = (𝐹9 ·/ 𝑅(𝑧|𝑓, 𝑡))                (3) 

 
𝑃∗(𝑡|𝑧) = (𝐹9 ·- 𝑅(𝑧|𝑓, 𝑡))                (4) 

 
𝑃(𝑧) = (𝐹9 ·-/ 𝑅(𝑧|𝑓, 𝑡))                (5) 

 
 
  where Fp is the reconstructed Spectrogram from  
  the last iteration data product, as in (1). 
 

And, from 𝑃∗(𝑥<|𝑧): 
 

  𝑃(𝑥<|𝑧) =
1∗(=>|2)
1(2)

                            (6) 
  

Finally, each marginal 𝑃(𝑥<|𝑧) and P(z) is normalized 
to correspond to a probability distribution. 

 

Figure 2. Example of frequency  
(P(f|z), frequency in y-axis)  

and time (P(t|z), time in x-axis) components  
(with respective weights) for a piano  

chords spectrogram. 
 
 

4. SCORE ROLE IN SOURCE SEPARATION 

4.1. Alignment 

It is worth noting that, in Spanish Folk Music, is more fre-
quent to find variations between a written score and a real 

performance recording, depending on the interpreter and 
the performance’s expressiveness. 

 
The MIDI score (a symbolic representation of the mu-

sical piece) allows to know which notes an instrument 
should be playing at any moment, and it contains ideal in-
formation about the tempo, note onsets, durations and 
notes loudness.  
 

This MIDI data is ideal, opposite to the recording mix-
ture, that probably has different tempo and micro-varia-
tions. If we don’t synchronize the MIDI info and the orig-
inal recording, the MIDI data is incorrect and the separa-
tion probably doesn’t work. 
 

The MIDI score can be synchronized with the audio 
using a Dynamic Time Warping [6, 7]. With this method, 
we compare the two sequences (MIDI and audio), and we 
find the correspondence between them, allowing us to 
adapt the MIDI. So, the MIDI info will correspond exactly 
to the original audio, having more accuracy in the process 
of extraction. 
 
4.2. MIDI Synthesis 
 
The synchronized MIDI score can be used as a reliable 
guide of what is playing in each moment of the musical 
piece, and this information allows to locate the source in 
the spectrogram both in time and frequency.  
 

In this work, we synthesize the separate instruments 
from the MIDI to have a prior base of the sounds that we 
separate [3]. Then, we complete this separate sounds with 
information of the real recording. This synthesized instru-
ment works as a prior frequency/time structure of the indi-
vidual source, and it's similar to the real sound. It is not a 
natural sound, but it is a reliable structure that have infor-
mation about where is placed the instrument that we want 
to extract in the spectrogram.  
 

One of the most important considerations when we 
synthesize the instruments from the score is the similarity 
with the original sound. If the synthesized sound has the 
correct partials and a good time transient approximation (a 
good global similarity to the real instrument sound), the 
PLCA model works better, and we will have a good con-
verging solution, as is explained in [3]. For example, if we 
try to extract a piano sound (that has even and odd partials) 
with a synthesized clarinet sound (a frequency spectrum 
with prominent odd partials), the extracted source will be 
closer to a clarinet than a piano, because the prior spectral 
base is not correct and the even partials of the piano are 
not seen, so, the extraction is wrong.  

 
4.3. Prior Source Structure 
 
The next step of the method is to use the 1st PLCA algo-
rithm to decompose the synthesized audio tracks, so that 
we go from having two-dimensional structures (frequency/ 
time) to a set of one-dimensional distributions, whose 
combination is each synthesized source Fsj. 
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First, once we have calculated the spectrogram of each 
musical line of the synthesized instruments that we are go-
ing to separate (which we call Fsj, where j is each of the N 
instruments that are to be extracted), we apply the PLCA 
algorithm to decompose these spectrograms into time and 
frequency components (Psj(f|z) and Psj(t|z)). 
  

So, we can have previous components of each source 
Fsj, which will then be approximated together to the orig-
inal mix spectrogram (F) with a second PLCA, while still 
identifying which components correspond to each source. 
 
 

5. FINAL 2D-PLCA INDIVIDUAL 
 RECONSTRUCTION 

 
The second time we use the 2nd PLCA algorithm we apply 
it in a different way. In this case, we initialize the analysis 
with the components Psj(f|z) and Psj(t|z) as previous data, 
trying to decompose the F spectrogram of the original re-
cording. 

 
The iterations in this case start from the marginal dis-

tributions from synthesized sounds Psj(f|z) and Psj(t|z). 
These components are adapted to the real sound at every 
iteration, as is shown in Fig. 3. 
 

Finally, we get a combination of marginals Pj (f|z) and  
Pj (t|z), result of the decomposition of the mixture F, so we 
can identify which component corresponds to each instru-
ment (j), and reconstruct each spectrogram (reconstructed 
and extracted spectrograms Fj from sources j = 1 to j = N) 
as in equation (1). A good result fulfills: 
 

F  » 	𝐹𝑗@
ABC                          (7) 

 
New components (random distributions) can be added 

to be analyzed in the PLCA reconstruction. In this manner, 
we can take real sounds that are not present in the score, 
but they appear in the recording. In addition, you can take 
residual components that do not belong to any instrument 
[3]. 
 

A more faithful way of adapting these marginal distri-
butions to the mix, is performing a two-step PLCA algo-
rithm. First, we compute only the marginal frequencies  
Pj (f|z), and in a second step, we iterate to calculate the ac-
tivations of those frequencies, which are the temporal mar-
ginals Pj (t|z). In this case, the second PLCA is used twice, 
making it a less efficient method. 
 

 
6. EXPERIMENT AND RESULTS 

 
6.1. Experiment 
 
The experiment is based on an 11-second fragment of “En-
tre Dos Aguas” (1975), a very representative rumba piece 
of Spanish flamenco by guitarist Paco de Lucía. Fig. 4 
shows the score section of this fragment. 

4   
 
 

Figure 3. PLCA adaption of a synth  
spectrogram (from source j) to the 

 original mix spectrogram F, generating a 
 reconstructed spectrogram of  

the source j. 
 

 
The piece has a fast tempo, flourishes such as Acciac-

caturas and Appoggiaturas, and short notes, which can be 
very challenging for source separation methods. The frag-
ment consists of a guitar melody accompanied by typical 
instruments in Spanish folk music, such as the Peruvian 
Cajon, accompanying guitar and the electric bass. The 
fragment contains both harmonic and percussive sounds, 
such as the plucked guitar strings. 

 
The aim of this example is to extract the Spanish guitar 

melody from the background. The general algorithm de-
scribed in this work is designed to reconstruct all the in-
struments from the piece. In this work, we focus on the 
Spanish guitar, which is the most common instrument in 
flamenco music. The Spanish guitar (or classical guitar) 
typically used in Flamenco music has nylon strings (fin-
gerstyle) that result in a sharp attack when plucked. In ad-
dition, many factors such as the material and instrument 
construction affect the spectral content. In the first step, we 
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synthesize the Spanish guitar track from the time-aligned 
MIDI score with the VST (Virtual Studio Technology) 
plugin DSK Guitar Nylon. 

 
The synchronism between the MIDI score and the au-

dio is very important for Flamenco music. In a fully auto-
matic version, the algorithm uses the DTW to temporally 
align the audio with the MIDI. Whenever the DTW pre-
sents poor alignment performance, this propagates through 
to the source separation stage. So, we use manual align-
ment in this example, which is much more precise than au-
tomatic alignment, to allow to focus on the performance of 
the PLCA in the source separation stage. 

 
 

 

Figure 4. "Entre Dos Aguas" Score. 
 

 
We use an FFT size of 8192 samples with an 88% over-

lap (7/8 of the FFT). For each PLCA, we do 100 iterations 
of the EM algorithm. The number of marginals in which 
we decompose the guitar usually corresponds to the num-
ber of different notes played by the instrument along the 
piece. Each independent sound has a number of marginals 
that define it. Instruments whose notes have a relatively 
stable spectrum along the duration of the note require a 
single marginal (in time and frequency) to define each 
note. However, Spanish guitar notes don't have a constant 
spectrum throughout, typically presenting spectro-tem-
poral variations. Thus we define 3 marginal distributions 
(3 time marginals and 3 frequency marginals) per Spanish 
guitar note to better capture the frequency variations in 
time. 
 
6.2. Results and conclusion 
 
Fig. 5 illustrates the result of the Spanish guitar extraction 
experiment. The top panel shows the spectrogram of the 
original audio fragment, the middle panel shows the spec-
trogram of the MIDI synthesis used as prior in PLCA, and 
the bottom panel shows the spectrogram of the Spanish 
guitar reconstructed from the PLCA separation. Visual in-
spection indicates that the melody is extracted and the note 
attacks correspond with the original voice. However, the 
sound of the reconstructed guitar is not brilliant enough 
when we listen to it. Our hypothesis is that the recon-
structed guitar fails to capture the characteristic spectro-
temporal variation of the Spanish guitar in flamenco mu-
sic. Plucking the strings of the Spanish guitar results in 
sharp attacks whose characteristic wide-band spectrum is 
different from the more harmonic resonant tail end of the 
notes. The spectrogram of the reconstructed guitar reveals 
that each note has a constant spectral structure, resulting in 
attacks that are perceptually closer to the rest of the note. 

 

 

 
 

 
 

 
 

 
Figure 5. Results of the Guitar Extraction 

 experiment described in 6.1,  
corresponding to the frequencies  

under 4 kHz. 
 
 

The synthesized guitar used as prior in the PLCA 
greatly influences the spectro-temporal features of the fi-
nal reconstructed result. If the original guitar synthesis 
does not contain sharp attacks followed by a more har-
monic decay, the PLCA model will not capture spectro-
temporal variations in each note. In theory, it is possible to 
overcome this limitation by introducing additional margin-
als in the PLCA to capture spectro-temporal variations. 
However, additional priors would require a means to guar-
antee that they do not model spectro-temporal variations 
from the other instruments in the mixture. In this particular 
example, introducing additional priors in the algorithm de-
grades the separation because the PLCA model also cap-
tures spectro-temporal variations from the instruments in 
the background. 
 
 

7. FUTURE WORK 
 
Future work includes the improvement of the modeling of 
spectro-temporal variations to further improve the results 
of the source separation for the challenging sharp attacks 
of the Spanish Guitar. In addition, it is useful to implement 
a method of automatic transcription of scores, since many 
works of flamenco are not written, as well as to compare 
results of using other methods of source separation, as 
methods of blind separation that do not require the use of 
a score. 
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ABSTRACT

This paper introduces a new unsupervised and score-informed
method for the segmentation of singing voice into syllables. The
main idea of the proposed method is to detect the syllable onset
on a probability density function by incorporating a priori syl-
lable duration derived from the score. Firstly, intensity profiles
are used to exploit the characteristics of singing voice depending
on the Mel-frequency regions. Then, the syllable onset proba-
bility density function is obtained by selecting candidates over
the intensity profiles and weighted for the purpose of emphasiz-
ing the onset regions. Finally, the syllable duration distribution
shaped by the score is incorporated into Viterbi decoding to deter-
mine the optimal sequence of onset time positions. The proposed
method outperforms conventional methods for the segmentation
of syllable on a jingju (also known as Peking or Beijing opera) a
cappella dataset. An analysis is conducted on precision errors to
provide direction for future improvement.

1. INTRODUCTION

1.1 Context and motivations

Indication from both psychoacoustic and psycholinguisti-
cal research Massaro (1974); Segui et al. (1990); Green-
berg (1996) suggests that the syllable is a basic perceptual
unit for speech processing in humans. The syllable was
recommended as a basic unit of automatic speech recog-
nition as early as 1975 Mermelstein (1975). The syllabic
level offers several potential benefits; for one, contrary to
the phoneme system which is specific to a language, the
syllable is universally defined in terms of acoustic sonor-
ity 1 : a syllable segment is fully determined by a maximum
of sonority (the vowel nucleus) surrounded by local min-
ima of sonority. Additionally, the syllable is the basic unit
of the prosody analysis of speech or singing voice.

In contrast to speech syllables, the duration of singing
voice syllables varies enormously and their vowel nucleus
may consists of numerous local sonority maxima due to the
various ornaments, typically the vibrato - amplitude and
frequency modulation, which poses new challenge for the
segmentation task. A musical score contains a wide range
of prior information, such as the pitch, the onset time and
the duration of the note and the syllable, which can be used
to guide the segmentation process.

1 the relative loudness of a speech sound.

1.2 Related work

Most of existing speech syllable segmentation methods can
be divided into two categories: unsupervised Mermelstein
(1975); Wang & Narayanan (2007); Obin et al. (2013) and
supervised Howitt (2000); J. Makashay et al. (2000). In
the Mermelstein method Mermelstein (1975), the syllable
onset are detected by recursively searching on the con-
vex hull of the loudness function. Wang & Narayanan
(2007) have explored the Mel-frequency spectral represen-
tations for syllable segmentation. Most recently, the Syll-
O-Matic system Obin et al. (2013) exploited the fusion of
Mel-frequency intensity profiles and voicing profiles which
gives the best segmentation result for the methods of the
first category. Supervised methods Howitt (2000); J. Makashay
et al. (2000) adopted from Automatic Speech Recognition
need the support of a language model and an acoustic model.
The latter is learned from a set of audio recordings and
their corresponding transcripts, which takes a considerable
amount of time to adapt this method from one language to
another.

The syllable segmentation of singing voice is still a re-
search gap which needs to be filled. The related subjects
are singing voice phonetic segmentation Lin & Jang (2007),
lyrics-to-audio alignment Fujihara & Goto (2012); Dzham-
bazov et al. (2016), and score-to-audio alignment of singing
voice Gong et al. (2015). The approaches adopted in these
works are mostly supervised, so the problems of the lan-
guage specificity and the need for a large amount of train-
ing data remain.

Various applications such as score-informed source sep-
aration Ewert et al. (2014); Miron et al. (2015), tonic iden-
tification Sentürk et al. (2013) and score-to-audio align-
ment Cont (2010) have been proposed in recent years which
exploit the availability of a musical score. Dzhambazov
et al. (2016) shows that modeling of duration improves
the phrase-level lyrics-to-audio alignment accuracy signif-
icantly.

This paper introduces a new unsupervised and score-
informed method for the segmentation of singing phrase
into syllables. We present the definitions of speech sylla-
ble and jingju singing voice syllable, and disclose the is-
sues existing in syllable segmentation in section 2. The
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approach is explained in section 3. The evaluation and the
error analysis are conducted on a jingju a cappella singing
voice dataset in section 4.

2. WHAT IS A SYLLABLE?

2.1 Definition

The task of automatically detecting the speech syllable is
based on the assumption that a syllable is typically vowel
centric and neighboring vowels are always separated by
consonants Howitt (2000). A precise characterization of
the syllable structure can be made in terms of sonorityAs-
sociation (1999), which hypothesizes that syllables con-
tain peaks of sonority that constitute their nuclei and may
be surrounded by less sonorous sounds Goldsmith et al.
(2011). According to the Sonority Sequencing Principle
Dressler (1992), vowels and consonant sounds span a sonor-
ity continuum with vowel nuclei being the most sonorous
and obstruents being the least, with glides, liquids, and
nasals in the middle.

Mandarin is a tonal language and there are in general
4 lexical tones and 1 neutral tone in it. Every charac-
ter of spoken Mandarin language is pronounced as mono-
syllable Lin et al. (1993). The jingju singing is the most
precisely articulated rendition of the spoken Mandarin lan-
guage. Although certain special pronunciations in jingju
theatrical language differ from their normal Mandarin pro-
nunciations, due to firstly the adoption of certain regional
dialects, and secondly the ease or variety in pronunciation
and projection of sound, the mono-syllabic pronouncing
structure of the standard Mandarin doesn’t change Wich-
mann (1991).

A syllable of jingju singing is composed of three dis-
tinct parts in most of the cases: the “head” (tou), the “belly”
(fu) and the “tail” (wei). The head consists of the ini-
tial consonant or semi-vowel, and the medial vowel if the
syllable includes one, which itself is normally not pro-
longed in its pronunciation except for the one with a me-
dial vowel. The belly follows the head and consists of the
central vowel. It is prolonged throughout the major por-
tion of the melodic-phrase for a syllable. The belly is the
most sonorous part of a jingju singing syllable and can be
analogous to the nuclei of a speech syllable. The tail is
composed of the terminal vowel or consonant Wichmann
(1991).

The speech syllable only contains one prominent sonor-
ity maximum due to its short duration (average < 250 ms
and standard deviation< 50 ms for Mandarin Wang (1994)).
In contrast, a singing voice syllable may consists of numer-
ous local sonority maxima, of which the reason is either in-
tentional vocal dynamic control for the needs of conveying
a better musical expression or unintentional vocal intensity
variation as a by-product of the F0 change Titze & Sund-
berg (1992).

2.2 Issues in syllable segmentation

The issues of speech syllable segmentation has been sum-
marized in Obin et al. (2013). Jingju singing voice brings

up two new issues. Firstly, the syllable duration of jingju
singing voice varies enormously. According to the statis-
tics of our dataset, the syllable durations range from 70 ms
to 21.7 s and its standard deviation is 1.74 s, which makes
it impossible to model the durations with one single distri-
bution as it has been done for speech Obin et al. (2013).
Secondly, as mentioned in section 2.1, the syllable’s cen-
tral vowel may consists of numerous local sonority max-
ima, which introduces noisy information for the syllable
segmentation.

A priori syllable duration information is often easy to
obtain from the score and this is an advantage which can
be exploited. The repertoire of jingju includes around 1400
plays Wichmann (1991), among which are still performed
and used in teaching are mostly well transcribed into sheet
music. Constructing the syllable duration distribution from
the score and using it to guide the segmentation process is
a feasible way of solving the two new issues mentioned
above.

3. APPROACH

The objective of this study is automatically segmenting
singing phrases into syllables by incorporating syllable du-
ration information derived from the score into syllable on-
set detection. Firstly, Mel-frequency intensity profiles are
measured over various frequency regions. An observation
probability function of syllable onsets is obtained by se-
lecting candidates over the intensity profiles and weighted
for the purpose of augmenting its value in the onset re-
gions. Secondly, the a priori duration distribution derived
by the score is incorporated into the Viterbi decoding to
determine the optimal sequence of syllabic onset time po-
sitions (Fig.1). The conventional unsupervised speech syl-
lable segmentation method is based on the detection of syl-
lable onset and landmark Obin et al. (2013). However, we
focus the issue only on onset detection because the def-
inition of syllable landmark Howitt (2000) doesn’t apply
to jingju singing voice due to the numerous local sonority
maxima within the central vowel.

Figure 1: Approach diagram.

3.1 Mel-frequency intensity profiles

A time-frequency representation is used to measure the in-
tensity contained into various frequency regions. For each
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frequency region, the specific loudness is measured as:

L
(k)
t =

N(k)∑
n=1

|A(t, n)|2
0.23

(1)

where k denotes the k-th frequency region,A(t, n) the am-
plitude of the n-th frequency bin at time t in the considered
frequency region, and n = 1 the start value of the sum-
mation index in the k-th frequency region. The specific
loudness is related to the sound intensity - the square of
the amplitude A(t, n) through a power law with an expo-
nent 0.23 Zwicker & Fastl (2013). In this study, the spe-
cific loudness is measured over 40 Mel-frequency bands,
with unitary integrated energy in order to enhance the in-
formation contained in low-frequency regions relatively to
high-frequency regions. The frequency bands are equally
spaced on the mel scale Slaney (1998), which approxi-
mates the human auditory system’s response more closely
than the linearly-spaced frequency bands. Then, the spe-
cific loudness L(k)

t is normalized into a probability density
function L

(k)
t norm so that each intensity profile will be fur-

ther equally processed (Fig.2-b).

3.2 Onset candidates selection

A syllable has a great probability of starting with a con-
sonant. Stop consonants consist of an interval of com-
plete closure. Because of this, all stops have a period of
silence. Affricates consonants have frication portion pre-
ceded by stop-like ‘silent’ portion. Liquids consonants are
normally voiced, but have less energy than vowels Johnson
(2011). Accordingly, consonants, apart from fricatives and
nasals, contain a complete silence or less energy (inten-
sity) than vowels. Additionally, a syllable is usually pre-
ceded by some silence or breath frames which also have
low intensities in certain frequency regions. These char-
acteristics incite us to conduct the syllabic onset detection
on L

(k)
t norm by a local maxima-minima detection method

Obin et al. (2013), which gives a local minima onset can-
didate sequence Onset(k) for each Mel-frequency band k.

The local maxima-minima detection method consists of
two steps: in the first step, we conduct a coarse search to
find all the maxima and minima positions; in the second
step, the positions are selected such that the maxima are
required to exceed both neighboring minima by at least
a heuristic height threshold (0.01 relative amplitue) and
to be separated by at least an heuristic offset threshold
(0.025s); otherwise, the maxima together with their neigh-
boring minima are considered as insignificant and suppressed.

This process forms a (K × T) matrix of onset time-
frequency position candidates (Fig.2-c). K and T denote
respectively the numbers of the Mel-frequency bands and
the time frames. Then, it is summed up into a (1 × T)
probability density function p (Fig.2-d) because the more
frequent is observed a time position of a candidate over fre-
quency bands, the more likely is the presence of an onset.
However, the exact time position of an onset may differ
from one frequency region to the other due to the asyn-
chronism of the information contained in the frequency re-

gions. Thus, a moving average window MA (typically, a
20 ms. window) is employed.

p = MA(
K∑

k=1

Onset(k)) (2)
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Figure 2: Spectrogram (a), Mel-frequency intensity pro-
files (b), (K×T) matrices of onset time/frequency position
candidates (c), onset probability density function p (d) and
its loudness weighted version (e), determined sequence of
syllable onsets (f) for the singing phrase: “Meng ting de
jin gu xiang hua jiao sheng zhen.”

3.3 Loudness weighting

Certain prominent peak positions can be identified as the
syllable onsets on the graph of the probability density func-
tion p (Fig. 2-d). However, numerous less prominent peaks
can also be found, which do not correspond to the real
syllable onsets. This noisy information (less prominent
peaks) will eventually degrade the performance of the on-
set sequence decoding. By observing the graph (Fig.2-d),
we clearly see that most of these noisy peaks appear in the
vowel regions which usually show a high intensity Dressler
(1992). To reduce these noisy peaks, we scale down the
high-intensity regions of p by multiplying it by a weight-
ing coefficient.

Inspired by the loudness gating method used in EBU
(2016), we employ an absolute gating threshold θa, a rel-
ative gating threshold θr and a sound pressure level stor-
ing block SPLi to detect the high-intensity signal frames.
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The intensity of the input singing voice signal is measured
frame by frame by the sound pressure level of its RMS am-
plitude SPLRMS = 20 log10(RMS). The current frame
is detected as high-intensity if its SPLRMS meets both of
the following conditions:

SPLRMS > θa (3)

SPLRMS > θr + SPLi (4)

where SPLi is the mean value of the integrated preceding
stored SPLRMS, θa, θr are heuristically selected as -35 dB
and -10 dB. Once a frame is detected as high-intensity, its
SPLRMS is added to the storing block SPLi.

A continuous sequence of high-intensity frames is de-
tected as the high-intensity region if it is followed by a con-
tinuous sequence of low-intensity frames. The length of
the latter should be larger than a threshold θl which will be
optimized by the grid search method. Finally, the p value
in the high-intensity regions is multiplied by a weighting
coefficient wh which will also be optimized later. (Fig.2-
e).

3.4 A priori duration distribution

The a priori duration distribution N (x;µl, σ
2
l ) is modeled

by a Gaussian function whose mean µl equals to l-th sylla-
ble duration of the score and whose standard deviation σl is
proportional to µl: σl = γµl (Fig.3). The proportionality
constant γ will be optimized by the grid search method.

N (x;µl, σ
2
l ) =

1√
2πσl

exp

(
− (x− µl)

2

2σ2
l

)
. (5)

The relative duration of each note is measured on the quar-
ter note length, so an eighth note has a duration of 0.5. We
only keep the relative duration and discard the tempo infor-
mation of the score. By normalizing the summation of the
notes’ relative durations to unity, then multiplying it by the
duration of the incoming audio recording, we obtain the
absolute score duration of the entire singing phrase which
is equal to the latter. The note’s absolute duration along
with its subsequent silence or the summation of the notes’
absolute durations (e.g. syllable gu in Fig.3) corresponding
to l-th syllable is assigned to µl. The duration distribution
(Eq.5) will be incorporated into Viterbi algorithm as the
state transition probability, which holds the highest expec-
tation on its mean value - the syllable duration of the score.

Figure 3: A priori relative duration distributions (bottom)
of the syllables in the singing phrase: “Meng ting de jin gu
xiang hua jiao sheng zhen.”

3.5 Decoding of the syllable onsets sequence

A sequence of a priori absolute durationM = µ1µ2 · · ·µL

is deduced from the score and the length of the incoming
audio (section 3.4). To decode the syllable boundaries, we
construct an hidden Markov model characterized by the
following:

1. The state space is a set of N candidate onset posi-
tions S1, S2, · · · , SN determined by picking the lo-
cal maxima positions from the probability function
p.

2. The state transition probability at decoding time l is
defined by a priori duration distributionN (dij ;µl, σ

2
l ),

where dij is the time distance between states Si and
Sj (j > i). The overall decoding time is equal to the
total syllable number L written in the score.

3. The observation probability for the state Sj is repre-
sented by its corresponding value in the onset detec-
tion function p, which is denoted as pj .

As we assume the onset of the current syllable is also the
offset of the previous syllable, the problem is translated
into finding the best offset position state sequence Q =
q1q2 · · · qL, for the given a priori duration sequence M ,
where qi denotes the offset of the ith decoding syllable or
the onset of the i + 1th decoding syllable. q0 and qL are
fixed as S1 and SN as we expect that the onset of the first
syllable is located in the beginning of the incoming audio
and the offset of the last syllable is located in the ending of
the audio. One can fulfill this assumption by truncating the
silences at both ends of the incoming audio. According to
the logarithmic form Viterbi algorithm Rabiner (1989), we
define

δl(i) = max
q1,q2,··· ,ql

logP [q1q2 · · · ql, µ1µ2 · · ·µl]

the initially step

δ1(i) = log(N (d1i;µ1, σ
2
1)) + log(pi)

ψ1(i) = S1

the recursion step

δl(j) = max
16i<j

[δl−1(i) + log(N (dij ;µl, σ
2
l ))] + log(pj)

ψl(j) = arg max
16i<j

[δl−1(i) + log(N (dij ;µl, σ
2
l ))]

and termination step

logP ∗ = max
16i<N

[δL−1(i) + log(N (diN ;µL, σ
2
L))]

q∗L = arg max
16i<N

[δL−1(i) + log(N (diN ;µL, σ
2
L))]

Finally, the best offset position state sequence Q is ob-
tained by the backtracking step (Fig.2-f).

4. EVALUATION

4.1 Dataset

The a cappella singing dataset 2 used for this study comes
from MTG and C4DM Black et al. (2014) and focuses

2 http://doi.org/10.5281/zenodo.345490

Proceedings of the 7th International Workshop on Folk Music Analysis, 14-16 June 2017, Málaga (SPAIN) 
ISBN: 978-84-697-2303-6

110



on two most important jingju role-types Repetto & Serra
(2014): dan (female) and laosheng (old man). It contains
39 interpretations of 31 unique arias sung by 11 jingju
singers. The syllable onset ground truth is manually an-
notated in Praat Boersma (2001), which represents 298
phrases and 2672 syllables (including padding written -
characters Wichmann (1991)). The average syllable du-
ration is 1.1s and the standard deviation is 1.74s. The syl-
lable duration dataset is manually transcribed from sheet
music.

The whole dataset is randomly split into 2 parts with the
constraint that each part is selected without role-type bias
and contains almost an equal number of onsets. One of
them is reserved as the development set for the purpose of
parameter optimization. Another part is used as the test set
to evaluate the syllable segmentation algorithms.

4.2 Evaluation metrics

The objective of the syllable segmentation for singing phrases
is to determine the time positions of syllable boundaries.
The evaluation consisted in the comparison of the deter-
mined syllable onsets and offsets to the reference one. We
use the same metric for the speech syllable segmentation
evaluation: recall, precision and F-measure Obin et al. (2013).
The definition of a correct segmented syllable is borrowed
from the note transcription evaluation Molina et al. (2014):
for the syllable onset, we choose a evaluation tolerance±τ
ms. For the offset, which is also the onset of the sub-
sequent syllable, ±20% of the reference syllable’s dura-
tion or ±τ ms, whichever is larger, is chosen as the tol-
erance. If both the onset and the offset of a syllable lie
within the tolerance of their reference counterparts, we say
it’s correctly segmented. As there is no standard toler-
ance previously defined for the evaluation of singing voice
syllable onset detection, and the tolerance for the evalua-
tion of speech syllable onset detection is too strict because
the average duration of speech syllable (200 ms) is much
shorter than that of singing voice syllable (1.1 s), we de-
cide to report the evaluation results for multiple tolerances,
τ = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3] (second).

4.3 Parameters optimization

The parameters which need to be optimized are: the length
threshold θl of low-intensity regions, the weighting coef-
ficient wh for p in high-intensity regions in section 3.3;
the proportionality constant γ in section 3.4. The syllable
segmentation accuracy can be reported by sweeping these
parameters on the development set. Table 1 lists the search
bounds and the optimal results.

Table 1: Search bounds, optimal results (OR) of the opti-
mization process for each parameter.

Parameters Search bounds OR

θl (s) [0.01, 0.1] with step 0.01 0.02
wh [0.1, 1] with step 0.1 0.2
γ [0.05, 1] with step 0.05 0.35

5. RESULTS AND DISCUSSION

5.1 Syll-O-Matic syllable segmentation

The evaluation includes the speech syllable segmentation
method Syll-O-Matic Obin et al. (2013) for a compari-
son with the unsupervised method. This method performs
the same Mel-frequency intensity profiles and onset can-
didate selection steps introduced in this paper. It detects
both the speech syllable onsets and the vowel landmarks.
We will not report its landmark detection performance be-
cause the definition of syllable landmark - the only and
most sonorous peak with the central vowel, doesn’t apply
to most of jingju singing syllables due to the existence of
numerous local sonority maxima within the central vowel.

Our proposed method can be seen as an adaption of the
original Syll-O-Matic method to the singing voice, which
introduces the loudness weighting to attenuate the noisy
peaks in the onset probability density function p, and a
priori syllable duration distribution to take account into the
duration information provided by the score, whereas only
a fixed mean (1.1s, the average syllable duration of our
dataset) normal distribution has been used in the Viterbi
decoding process of the original Syll-O-Matic method.

The Syll-O-Matic method performs bad on our dataset
(Fig.4) and causes a low F-measure. There are at least three
reasons for this bad performance. First, its Viterbi decod-
ing algorithm doesn’t restrict the overall decoding time, so
any peak position in p is able to be decoded as a sylla-
ble onset if it happens to have a high duration probability.
Second, the numerous sonorous peaks in p act as the noisy
information, which introduces many insertions. Third, the
duration distribution used in Syll-O-Matic is mean-fixed,
which doesn’t conform to the fact of the variable syllable
duration of the jingju singing voice.

5.2 HMM-based lyrics-to-audio alignment

The evaluation also includes a HMM-based lyrics-to-audio
alignment method Dzhambazov et al. (2016) for a compar-
ison with the supervised method. The HMM-based system
extends Viterbi decoding to handle the duration of states.
For each of 40 Mandarin phonemes and diphthongs, a one-
state HMM is trained from a 67 minutes corpus of a cap-
pella female jingju singing voice. This corpus is differ-
ent from the one mentioned in section 4.1 in terms of the
singer and the repertoire. For each state a 40-mixtures of
Gaussian distribution are fitted on the MFCCs feature vec-
tor. The HMM-based system outputs the decoded syllable
onset positions.

5.3 Proposed method

Even without the loudness weighting step, the proposed
method (Score-informed) outperforms all the compared meth-
ods. Additionally, the loudness weighting (Score-informed
+ Loudness weighting) successfully improves the segmen-
tation performance due to the reduction of the noisy in-
formation in the high-intensity region of the probability
density function. Compared to supervised methods (e.g.
HMM-based), the results are encouraging for the use of
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Figure 4: Recall, precision and F-measure results of the
syllable segmentation evaluation. The three metrics do not
look so different because the number of the segmented syl-
lable and the number of the ground truth syllable are al-
most the same.

unsupervised score-informed method for singing voice syl-
lable segmentation, which avoids the problems of the lan-
guage specificity and the need for a large amount of train-
ing data.

5.4 Error analysis

We conduct error analysis to make clear the causes of seg-
mentation errors of our proposed method, and also to pro-
vide direction for future improvement. First, only the er-
rors occurred in the segmented syllables (precision errors)
will be analyzed because the number of the segmented syl-
lable (1329) and the number of the ground truth syllable
(1334) are almost equal for the result of the proposed method,
which means almost all the syllables in the ground truth
are segmented. Second, only the errors out of 0.3s tol-
erance will be analyzed because the causes of these errors
are straightforward to be identified from observing the seg-
mentation plots. 169 syllables are mistakenly segmented
out of 1329 evaluated syllables (Table 2).

Table 2: Performance of the proposed method with 0.3s
tolerance.

Method Recall(%) Precision(%) F-measure(%)

Score-informed+
Loudness weighting

86.83 87.28 87.05

Four types of error have been identified (Table 3) by
observing the plots of detected syllable onsets compared
to ground truth onsets:

• Redundant intensity minima: errors caused by re-
dundant intensity minima (redundant peaks) in the
onset probability density function p. Silence or large
intensity change within the syllable are the main causes
of this error type.

• Missed intensity minima: errors caused by missed
intensity minima (missed peaks) in p. Long silence
followed by the syllable is the main cause of this
error type, which usually happens in laosheng (old
man) singing.

• Ambiguous syllable transitions: errors caused by am-
biguous syllable transitions, such as transitions from
vowel to vowel or to semi-vowel, from semi-vowel
to semi-vowel. This cause has also been reported
in the unsupervised speech syllable segmentation re-
search Obin et al. (2013).

• Score and singing incoherent: errors caused by large
contrast between syllable duration in score and that
in real practice.

Table 3: Error analysis for the result of the proposed
method with 0.3s tolerance.

Types of error Num. errors (frequency %)

Redundant intensity minima 92 (54.3)
Missed intensity minima 34 (20.3)
Ambiguous syllable transitions 32 (18.8)
Score and singing incoherent 11 (6.6)
Sum 169 (100)

The reason for the first three types of error is that our
proposed method only uses intensity-related feature and
technique (Mel-frequency intensity profiles and loudness
weighting) which are not knowledgeable in the phonetic
context of the signal frames. By applying phonetic fea-
tures to shape the peaks of the onset probability density
function in the future, for example, comparing the phonetic
content before and after the silence, we may reduce these
types of error. For the last type of error - Score and singing
incoherent, the effort should be put in improving the on-
set decoding method. Using different duration distribution
function, such as gamma distribution, and variable decod-
ing time can be the possible way to tackle this type of error.

6. CONCLUSION

In this paper, we present the definition of jingju singing
voice syllable and disclose the new issues arose by this
singing form. A new method is then introduced for the
segmentation of singing voice into syllables. The main
idea of the proposed method is to detect the syllable on-
set on a syllable onset probability density function by in-
corporating the syllable duration information of the score
into the decoding process. The main contribution of this
work is twofold: First, the loudness weighting is applied
on the high-intensity regions of the onset probability den-
sity function, which reduced the noisy sonorous peaks and
augmented the segmentation accuracy. Second, the syl-
lable duration distribution is incorporated into the decod-
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ing process of the optimal syllable onset sequence to make
use of the a priori information of the score. The proposed
method outperforms conventional methods for the sylla-
ble segmentation of singing voice phrases, and provides a
promising paradigm for the segmentation of singing voice
into syllables.
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ABSTRACT

It is well known that learning how to play a musical instrument
is a difficult task. During this long process, some decisions may
help the students improve their performing skills. In the case
of violin students, and in the context of the Escola Superior de
Música de Catalunya (ESMUC), some teachers detected that stu-
dents taking some lessons in the folk tradition style play better
with respect to those students who don’t take these lessons, when
playing specific repertoire from the classical tradition. But, is
it possible to quantify this improvement? What do teachers ex-
actly mean when they say students play better? This study shows
a methodology to quantitatively differentiate between these two
groups of students, and discusses which musical aspects define
this improvement.

1. INTRODUCTION

The main goal of this research is to empirically verify that
violin students from the classical tradition achieve a sig-
nificant improvement in the performance of their common
repertoire when applying learning methods and techniques
used in the folk tradition (i.e. Fiddle).

For that, we need to include several areas of knowledge
ranging from musicological (what does performance im-
provement mean?), pedagogical (how can we design and
evaluate a learning process?) to engineering (which tech-
niques for Motion Capture (MOCAP) should we use?) and
statistical analysis (which descriptors from Music Informa-
tion Retrieval (MIR) should we extract?).

This work is divided in three parts. Section 2 debates
about the context of this study and discusses about the
facets of music to be analyzed. Section 3 presents a de-
tailed description of the recording sessions and technical
setup for data acquisition, and Section 4 shows the results
of the preliminary analysis and a verification of these re-
sults in a new bench of measurements. At the end, some
conclusions about pedagogical implications derived from
this study are presented in addition to some remarks about
research reproducibility.

2. PERFORMANCE SKILLS

First, we discuss about what we understand as an improve-
ment in the performance skills. For that, we need to tackle
the concept of quality in the performance. In general, a
musician is able to adapt the performance of a given score
in order to achieve certain musical and emotional effects,
that is, provide an expressive musical performance. There

exists a huge literature for the analysis of expressive musi-
cal performances. Focusing on the approaches using tech-
nologies, Widmer & Goebl (2004) provides a good overview
on this topic. Under our point of view, one of the most rel-
evant contributions is the Performance Worm for the anal-
ysis of performances by Dixon et al. (2002). It shows the
evolution of tempo and perceived loudness information in
a 2D space in real time, with a decreasing brightness ac-
cording to a negative exponential function to show past
information. Saunders et al. (2004) analyzed the playing
styles from different pianists using (beat-level) tempo and
(beat-level) loudness information. In addition to that, dif-
ferent systems have been developed to allow machines cre-
ate expressive music, which are summarized by Kirke &
Reck Miranda (2009). In summary, most of the studies
related to expressive performances are based on loudness
and rhythmic properties of music. According to our main
goal which is to present evidences in differences of perfor-
mances for violin students from fiddle and classical tradi-
tions, in the context of a music school, we decided to focus
on rhythm as it is one of the key aspects to work with clas-
sical violin students. So, for the rest of this work, we will
assume that the improvement in the performance can be
measured in terms of rhythm (See Saña (2015) for more
details).

3. RECORDING SETUP

The second part of the study focuses on the designed record-
ing sessions with students and the definition of multi-modal
data to be recorded. In the last few years, the number of
works related to MOCAP presented in journals and confer-
ences have featured a notable increase. The continuously
decreasing price of sensors (i.e. LeapMotion, Kinect) and
acquisition platforms (i.e. Arduino or RaspberryPi), the
increasing number of open developing libraries for differ-
ent platforms (i.e. OpenFrameworks, Processing), in ad-
dition to the interesting results in the field of Music In-
formation Retrieval (MIR) from different research institu-
tions (i.e. Repovizz, SonicVisualiser and VAMP plugins),
contributed to that. In this context, MOCAP data have
been used for creative development (i.e. Sinyor & Wan-
derley (2005), Bisig & Palacio (2016) or Sarasua et al.
(2016)), Human Computer Interaction (HCI) (i.e. Mar-
tin et al. (2016), Tanaka (2010) or Hemery et al. (2016)),
and pedagogical applications (i.e. Hochenbaum & Kapur
(2013), Chen et al. (2016) or Xiao & Ishii (2016)). Focus-
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Figure 1: 1-way anova analysis plots for (a) tempo estimation (auto-correlation) descriptor on student variable, using
bow-force estimation stream, and (b) pulse clarity descriptor on student variable, using pickup stream.

ing on the work here presented, a large number of works
related to gesture caption and analysis from violin perfor-
mances cam be found (i.e. Kimura et al. (2012), Marchini
et al. (2011), Young (2009), Overholt (2005), or Young
(2002)).

In parallel to the analysis of the required tools for the
recording sessions, the recording procedure is debated. It
consists on a set of ten recording sessions with eight stu-
dents playing both classical and fiddle pieces/exercises, with
some of these students following the classical tradition and
others following both classical and fiddle traditions. For
the preliminary study, all the students come from the Es-
cola Superior de Música de Catalunya. For all the exer-
cises, students and sessions, we created a multi-modal col-
lection with video (from 3 cameras: foot, front-side and
general views), audio (pickup attached to the violin and
two microphones: one close to the violin and the other
one far enough to include the room effects), and bow-body
relative position information (from the Polhemus system
developed by the Music Technology Group at Universitat
Pompeu Fabra (Maestre et al., 2010)). A full description of
the recording process can be found in Guaus et al. (2013).

4. ANALYSIS

4.1 Preliminary analysis

All the collected data feed the statistical analysis using
state of the art techniques for audio content description in
the MIR discipline (See Gouyon et al. (2008), Schedl et al.
(2014) or Moffat et al. (2015) for an overview in this topic).
As mentioned above, the analysis is centered in rhythmic
aspects of music. Then, from the huge list of the available
descriptors, this research focuses on length, beatedness,
event density, tempo estimation (autoc), tempo estimation
(spec), pulse clarity, low energy, onsets, attack time, and
attack slope. All these descriptors are available in the MIR-
Toolbox for Matlab (Lartillot & Toiviainen (2007)). All
of them are normalized with respect to the descriptors ob-
tained from recordings by expert teachers in their musical

tradition (i.e. Classical or Fiddle) playing all the exercises.
The statistical influence between the exercises, students

and sessions in the recorded performances are computed
through an ANOVA analysis with data from descriptors
derived from audio and MOCAP streams. Results reveal
that Variations in the Pulse Clarity and Tempo Estimation
of the audio recorded from the pickup were explained by
the two groups of students described above (See Figure 1
for details). Moreover, beyond the numerical results, it is
surprising to observe how it is possible to identify the two
groups of students with audio recordings from data from
a simple pickup, and focus the analysis on the standard
pulse clarity and tempo estimation descriptors. In other
words, for this purpose, MOCAP data is not required, and
descriptors may be computed from a state of the art analy-
sis plug-in.

4.2 Verification of results

A second benchmark of recordings and analysis is designed
under these conditions (i.e. using a pickup and computing
tempo estimation and pulse clarity descriptors) with stu-
dents from the Conservatorio Superior de Msica Salvador
Seguı́ de Castellón. The hypotheses we want to verify are:

H1: Students from the classical tradition with some train-
ing in the jazz/folk tradition perform rhythmically
different (Better?) with respect with those students
without this training

H2: The two groups of students can be identified with the
analysis of the pulse clarity and tempo estimation
from audio recordings.

A side objective of this new set of recordings and anal-
ysis is to include the research reproducibility (Vandewalle
et al. (2009)) allowing small music schools to quantita-
tively analyze rhythmic aspects of music from their stu-
dents. So, the tools we use are a small pickup attached to
the violin for recordings and the descriptors are computed
by using the widely extended VAMP plug-ins distributed
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Figure 2: Results of the statistical analysis for (a) Pulse clarity and (b) beat estimation using audio data from a pickup for
students for the classical tradition (blue) and students from both classical and fiddle tradition (red).

by the QMUL. Specifically, the setup and tools we use are
summarized as follows:

Sonic Annotator: Sonic Annotator is a batch tool for fea-
ture extraction and annotation of audio files allowing
audio analysis results to be output in a variety of for-
mats (http://vamp-plugins.org/sonic-annotator/).

QMUL VAMP plug-ins: Sonic Annotator uses the VAMP
architecture to allow researchers to implement their
own algorithms for sharing research results with the
whole community (http://vamp-plugins.org/plugin -
doc/qm-vamp-plugins.html#qm-onsetdetector).

Specifically, by using VAMP plug-ins, we compute:

• Pulse clarity as the standard deviation of the Inter
Onset Intervals (IOI) as described by Bello et al.
(2005).

• Beat estimation using Tempo and Beat Tracker as
described by Davies & Plumbley (2007).

Figure 2 shows the results of statistical analysis for (a)
pulse clarity and (b) beat estimation from audio data for
students in the classical tradition (blue) and students in
both classical and fiddle tradition (red) for all the played
exercises through all the sessions. Median values in pulse
clarity are, in general, higher for students enrolled in both
traditions at the same time than beat estimation is closer
to zero. As the results are relative to the pulse clarity and
beat estimation obtained by a reference teacher, we con-
clude that the second group of students (red) have more
control in the rhythmic aspects of their performances. An
this is what we wanted to demonstrate.

5. CONCLUSIONS

This paper presented a methodology for distinguishing clas-
sical tradition violin students who take lessons in the fid-
dle tradition with respect to those who don’t. Two main
conclusions can be extracted from this work. First, from
the pedagogical point of view, presented results may sup-
port music schools to encourage music teachers and stu-
dents the inclusion of music from multiple traditions in
their daily practices and repertoire. Second, after some
preliminary tests, we observed how the caption system can
be implemented with a simple commercial pickup and the
statistical analysis can be based on two state of the art au-
dio descriptors available on the Internet. Due to the sim-
plicity of the system, research reproducibility is guaran-
teed allowing music schools to replicate the experiments
and monitor the learning process of their students.
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1. INTRODUCTION

Flamenco is a rich oral music tradition with strong impro-
visational character from the Southern Spanish province of
Andalucı́a. Having evolved from a singing tradition (Gam-
boa, 2005), the singing voice, refered to as cante, remains
the central element in the genre’s current form, accom-
panied by guitar playing and rhythmical hand clapping.
During a flamenco performance, accompanied singing sec-
tions alternate with instrumental interludes, in which gui-
tarists often step out of their accompanying role and per-
form so-called falsetas. In Núñez & Gamboa (2007) the
term falseta is described as “the interpretation of a small
composition with autonomous musical identity”. By play-
ing falsetas, guitarists contribute a piece of their own in-
spiration, either composed by themselves or re-interpreted
from masters of the genre, to the performance as a whole.
In this study, we focus on the mutual interaction between
falseta and cante with respect to melodic content. We iden-
tify a large number of cases where a characteristic melodic
pattern can be found in guitar falsetas as well as in the
singing voice melody. These cross-occurrences are not
limited to the same performance, but can span across decades
and even genres. Based on a corpus of 50 such melodic
cross-occurrences, we study their characteristics and com-
putationally assess the melodic similarity of the detected
examples. This study opens a new research line in compu-
tational ethnomusicology which can reveal novel aspects
of the creation and evolution of flamenco music and fur-
thermore gives rise to a number of technological challenges.

2. CORPUS STUDY OF MELODIC
CROSS-OCCURRENCES

We gathered a representative corpus of 50 examples of
melodic patterns encountered in commercial music record-
ings, which occur in both, a singing voice and a falseta
melody. In 67% of the cases, the melodic fragment first
occurred in a sung melody and has later found re-use in a
falseta. In some cases, this recreation occurs either dur-
ing the same performance in a call-response manner. In
other cases, the falseta melody is taken from popular gen-
res (i.e. coplas or cuplés) or related flamenco fusion gen-
res, including the rumba catalana, flamenco rock and fla-
menco inspired pop music commonly referred to as “new
flamenco”. In the remaining 33% of the examples, a melody
which first occurred in a falseta has later been reinterpreted
in the cante. In some cases, the respective melodic frag-

ment even takes on a fundamental structural role in a fla-
menco song. We furthermore discovered that both cases,
re-use through the guitar and through the singing voice,
show a tendency to take place in particular flamenco styles
(specifically bulerı́as and tangos) and that certain guitarists
show to be particularly involved in this process, most promi-
nently Paco de Lucı́a.

3. QUANTITATE ASSESSMENT OF MELODIC
SIMILARITY

Given the expressive and improvisational nature of flamenco
music, occurrences of the same melodic pattern will in-
evitably exhibit difference by means of melodic variation
and ornamentation. In order to objectively assess the sim-
ilarity between two instances of the same fragment, we
apply a computational melodic similarity measure. We
manually transcribe the guitar falseta (a) and the respec-
tive sung melody segment (b) to MIDI format. For a given
pair a and b we compute the earth mover’s distance (Typke
et al., 2003) da,b and compute the ratio r =

da,rand

da,b
with re-

spect to the average distance of a to 500 randomly melodic
fragments extracted from the Corpus COFLA (Kroher et al.,
2016).

4. CASE STUDIES

We conducted a number of case studies, where we analyse
relevant examples of the research corpus in detail with re-
spect to the context of origin and re-interpretation of the
melodic material and the amount of variation among them.
One example is a melodic pattern appearing in both falseta
and cante of the song Tangos de la Sultana recorded by
singer Camaron together with guitarist Tomatito (Figure 1)
in 1979. Within the song, the pattern first occurs in the
guitar before it is interpreted by the singer. It furthermore
forms an essential part of the vocal melody, which is re-
peated throughout the song. A very similar pattern is en-
countered in a song of the same style titled La que quiera
madroños vaya a la sierra recorded by singer La Repompa
in 1958. A computational analysis shows that the com-
puted similarity between the falseta and the vocal section
in Tangos de la Sultana is nearly identical to the similarity
computed between the falseta and the respective section in
La que quiera madroños vaya a la sierra.
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Figure 1: Manual transcription of a melodic pattern from
the song Tangos de la Sultana recorded by Camaron and
Paco de Lucı́a.
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1. INTRODUCTION

In music traditions around the world, melodic ornamen-
tation is used by performers as an expressive resource to
embellish and add individual interpretation to a melody. In
flamenco singing, cante flamenco, it is precisely the orna-
mentation which defines the flamenco aesthetics and with-
out it the cante would not be flamenco.

Each flamenco style is characterized by a distinct proto-
typical melody (melodic skeleton), which can be subject to
a great range of ornamentation and variation (Mora et al.
(2016)). Despite the commonly referenced presence of or-
namentation in flamenco music, only few systematic ap-
proaches have studied this phenomenon. To this day, there
does not exist any established taxonomy of ornaments and
the structural importance of melisma remains unexplored.
Gómez et al. (2011) proposed a computational approach
to recognition and characterization of flamenco ornamen-
tation. A set of pre-defined ornament types, mainly bor-
rowed or adapted from classical music theory, is extracted
from a corpus using a the Smith-Waterman algorithm (Smith
& Waterman (1981)). Other approaches to recognition and
characterization of ornamentation have been proposed in
the context of popular ornamentation, see for example Puiggròs
et al. (2006); Perez et al. (2008); Giraldo & Ramı́rez (2016).
In this work we propose a new computational strategy to
detect and characterize ornamentation in flamenco singing.

2. METHODOLOGY

We approach the problem of extracting and characteriz-
ing ornamentation by focusing on a specific type of fla-
menco cantes which have evolved from traditional popular
chants. Flamenco singers extend the popular melody by in-
troducing melodic ornamentation and variation, mainly in
the form of melismatic ornamentation. Consequently, by
comparing flamenco performances to popular version of
the same melody, we can quantitatively assess, extract and
characterize the ornamentation introduced by the flamenco
artist.

The outline of the approach is as follows. We pro-
cess a corpus containing recordings of the popular melody
and various flamenco interpretations of the same chant.
For each recording, we first perform a computer-assisted
singing voice transcription using the CANTE (Kroher &
Gómez, 2016) software. We then use the gap-tolerant
Needleman-Wunsch (Needleman & Wunsch, 1970) align-
ment algorithm to align the flamenco performance tran-

scriptions to the popular melody. Assuming that unmatched
notes in flamenco performances correspond to added con-
tent with respect to the popular melody, we can isolate sec-
tions of the song where ornamentation occurs. An example
is shown in Figure 1 (top), where notes marked in red cor-
respond to the popular melody and the black segments are
the extracted ornaments. We use the isolated ornaments to
establish a taxonomy of typical ornamentation in flamenco
music, borrowing and extending concepts defined in the
context of classical and medieval music. More specifically,
we represent the isolated the ornaments in Parsons code
(Parsons (1975)) as a concatenation of basic neums. In
this way, we can analyze the occurrence of small melodic
atoms and their combinations.
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Figure 1: The “differences” in the melodic contour con-
tains the ornamental resources. Bottom: the popular ver-
sion. Top: the version performed by flamenco singer
Manuel Mairena.

3. CASE STUDIES IN RELIGIOUS CONTEXT

In this pilot study we consider the case of a religious chant
(“Santo Dios”) which is performed in a social-religious
context of Mairena del Alcor (Seville, Spain) and has evolved
into a flamenco style. For this case, we collected several
versions (including the popular and flamenco versions) in
order to find the ornaments representing the formal change
to the flamenco form.

This method is proposed in Marqués et al. (2012) to
study the process of flamenco evolution. The case of (“Santo
Dios”) is considered as a live model to investigate the cul-
tural preferences that influence the creation and evolution
of flamenco music.
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ABSTRACT

The aim of this paper is to present the AEPEM collection, con-
sisting of more than five thousand scores of French traditional
melodies. The original material and the digitized collection are
described. A short statistical analysis is performed to compare
this collection to existing ones in terms of melodic profiles.

1. INTRODUCTION

The AEPEM is an association, created in 2004, working
on French traditional music. Its name is an acronym for
what can be translated as “association for studying, pro-
moting, and teaching traditional music from French pro-
vinces”. Aside from its role as a record label, the main
focus of the association has been the publication of a digi-
tal music library.

During the second half of the 19th century and the be-
ginning of the 20th, popular music and songs have been
collected in many parts of France. The collectors, or “folk-
lorists”, in charge of this work have documented the arti-
facts with various degrees of precision. Books containing
the scores, sometimes alongside other ethnographic con-
siderations, have been published at that time. Many of
these books are publicly available via the French National
Library 1 or on the website archive.org.

The AEPEM is aiming at making these music scores
available, in a digital format, and in a single repository.

2. THE DIGITAL LIBRARY

The scores have been manually digitized using the soft-
ware Melody Assistant. 2 The files created are in a pro-
prietary format, with a .myr extension. MIDI and ABC
files were automatically generated, and are also available.
5418 melodies are published at the time of writing, but this
number is growing as more books are being digitized.

When it is available in the original book, the following
metadata is given:

• title
• incipit: first line of the lyrics
• type of melody: dance tune, lullaby. . .
• location and date of collection
• name of the singer
• location and date of birth of the singer
• name of the collector

1 gallica.bnf.fr
2 www.myriad-online.com/en/products/melody.htm

3. COMPARATIVE ANALYSIS

In this section, we compare the AEPEM collection with:

• the Meertens Tune Collection - Large Corpus (MTC-
LC), presented in van Kranenburg et al. (2014), and
containing 4830 Dutch songs

• O’Neill’s collection The Dance Music of Ireland, con-
taining 1001 Irish traditional tunes 3 (O’Neill (1907))

First, we simply count the occurrences of different inter-
vals in all melodies of the corpora. The bar charts in Figure
1 shows the relative frequency of all intervals. In AEPEM
as in MTC-LC, ascending and descending major seconds,
and unison, are the most common melodic intervals. Uni-
son occurs much less frequently in O’Neill’s collection.

Second, we count the frequencies of pairs of successive
intervals, that give a richer description of the melodic con-
tours. The heatmaps in Figure 2 show these frequencies,
restricted to intervals between descending and ascending
fifths. The X- and Y-axis represent the first and second
interval of the pair, respectively. A striking resemblance
appears between the AEPEM and the MTC-LC heatmaps,
but is not shared with O’Neill’s.

Further analysis could be conducted using n-grams of
intervals, or other sets of features, to reveal common char-
acteristics and specificities of the different corpora. More
importantly, musicological and perceptual analysis could
be conducted to assess whether or not these objective mea-
surements correlate with perceived similarities.

4. CONCLUSION

We have introduced the AEPEM collection, and described
both its sources and the digitized collection, available on
request. 4 A short statistical analysis revealed similarities
of the melodic contours in this collection and in MTC-LC.

The AEPEM collection is the result of a collaborative
effort started in 2004. We believe it can be a valuable re-
source for the study of French traditional music, from the
perspective of ethnomusicology as well as computational
analysis. Thanks to the metadata provided, and the avail-
ability of scanned versions of many of the books, tasks
such as geographical clustering or optical music recogni-
tion can be tackled.

3 ABC transcriptions available at trillian.mit.edu/˜jc/
music/book/oneills/1001/

4 www.aepem.com/contact
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Figure 1: Relative frequency of intervals (X-axis in semitones)
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Figure 2: Heatmaps of the relative frequency of pairs of successive intervals (axes in semitones)
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1. INTRODUCTION 

The demonstration of software is connected with the con-

tribution focused on ethno-musicological and harmonic 
analysis of adaptations of Slovak folk songs by Slovak-

American composer Miloslav Francisci. The software is 

oriented on detection of sounds, which are built up with 

thirds, that means with distances of 3 or 4 semitones 

modulo 12 between each sounding pitch. If there is such 

vertical structure detected, the chord is named according 

to the attached table. The presented software improves 

the Harmanal tool, which was presented to analyse e.g.  

Schubert´s and Mozart´s compositions in the years 2007-

2009. 

2. INPUT DATA 

Input data are in MIDI format. MIDI is the most wide-

spread format for digitalization of music information. 

There are two most severe problems in work with this 

type of music information: 1. the same digit for enhar-

monically different notes effects ambiguity in detection 

of concrete tonal-key affiliation. 2. the low quality of 

MIDI file of majority of compositions downloaded from 

internet from the point of view of time (duration of each 

pitch). MIDI files on Internet are previously created by 
playing on MIDI keyboards by people, who are not able 

to play machine-like time-precisely. Therefore some 

sounds are in these MIDI files included also to previous 

beat or following one, where it should not exactly sound 

(the composer didn´t write it so). The mixture of sounds 

belonging to neighboring beats causes difficulties in 

chord-detection.  

3. CHORD AND MELODIC TONES DETECTION 

The procedure of chord tones detection is based on the 

looking for distance of 3 or 4 between MIDI numbers for 

each pitch-pair after shifting there to the nearest position 

each other. Those pitches, which are not used in this dis-

tance, are evaluated as melodic ones, and are excluded 

from further calculation. If there is no structure of thirds 

detected in one beat, it is included into another beat for 

looking for arpeggiated chord till there is another barline. 

4. NAMES OF DETECTED CHORDS 

Names of chords are easy to understand, while they 

are tending to be international. Signs for triads are “+” for 

major triad, “-“ for minor triad, etc. The inversion of triad 

is signed by numbers as usual in basso continuo. The in-

versions of seventh chords are signed by numbers – frac-

tions, which sign the interval between bass-pitch to sev-

enth and to root of chord (5/6, ¾ and 2 – as ½).  

5. OUTPUT, RESULTS AND THEIR USAGE 

5.1 Form of output 

The output is visualized in Sibelius score file, the signs of 

chords are located under the bottom staff, horizontally 

under the particular beat. If the chord is repeated, the rep-

etition sign is “=”. 

 

5.2 Results – their significance and limitations 

Results might offer a way to define one of style-features 

of musical thinking of analyzed collection of songs 

(compositions). Current version of software detects only 

structure of chords, not their tonal functions as tonic or 

dominant. For this possibility we are currently working 

on another extension – automatic tonal-key detection. 

Then it would be possible to allocate the harmonic func-

tion for every chord and eventually to find and define the 

cadential progressions and harmonic dynamism.  
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Structure in num-

ber of semitones 

English name of the 

chord 

Sign of 

chord 

4-3 Major triad + 

3-4 Minor triad - 

4-4 Augmented triad ++ 

3-3 Diminished triad -- 

4-3-3 Dominant seventh D7 

4-3-4 Major seventh Maj7 

3-4-3 Minor seventh Min7 

3-3-3 Diminished seventh Dim7 

3-3-4 Half-diminished 

seventh 

Dm7 

4-4-3 Augmented seventh Aug7 

3-4-4 Minor-major 

 seventh 

Min+7 

Table 1. Detected chords, their names and signs. 

From the left: interval structure of the chord in basic posi-

tion in number of semitones between neighboring tones 

from the root, English name of the chord, used sign. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chord duration (%) Chord types 

File 

Maj

5 

Min

5 

Dim

5 

Aug

5 D7 

Dim

7 

Dm

7 

Maj

7 

Min

7 

MinMaj

7 

Aug

7 No 

05_Tou_nasou_dolineckou.mid 47% 1% 0% 0% 35% 0% 0% 0% 0% 0% 0% 

17

% 

07_Este_sa_nevydam.mid 38% 25% 0% 0% 23% 0% 0% 0% 0% 0% 0% 8% 

19_Ovce_moje,_ovce_problem.

mid 14% 31% 0% 0% 20% 0% 19% 3% 5% 1% 0% 6% 

72_Nichto_nezna,_nebude_ 

znac.mid 74% 4% 2% 0% 11% 0% 2% 0% 0% 0% 0% 6% 

73_Pri_Presporku_verbuju.mid 34% 24% 5% 0% 15% 9% 0% 0% 0% 2% 0% 

11

% 

74_Zahradka,_zahradka.mid 50% 10% 3% 0% 30% 0% 0% 0% 0% 0% 0% 8% 

75_V_tej_nasej_zahradke.mid 53% 10% 3% 0% 18% 0% 0% 0% 0% 0% 0% 

18

% 

76_Leti,_leti_roj.mid 20% 30% 3% 0% 18% 0% 2% 8% 11% 0% 0% 7% 

78_Ide_suhaj_po_dvore.mid 22% 36% 3% 0% 33% 3% 0% 0% 0% 0% 0% 3% 

90_Kopala_studienku.mid 23% 35% 3% 0% 33% 1% 4% 0% 1% 1% 0% 0% 

Total duration in all files 36% 20% 2% 0% 26% 1% 4% 1% 2% 0% 0% 8% 

Figure 1. The table of statistical results of appearance of chords, detected by automated computerized chord analysis 
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1. Introduction 

This paper presents the results of collaboration between 

an ethnomusicologist and a music theoretician, 

analysing adaptations of folk songs by a composer of 

the late 19th century.  

In the introduction we present the Slovak-American 

composer Miloslav Francisci (1854 –1926), whose 

adaptations of Slovak folk songs, designed for concert 

performance, contributed to the propagation of Slovak 

folk music in America. His two-part cycle of folk 

songs adapted for piano, entitled Trávnice 

([Haymaking Songs], 1892, 1893) contains 200 piano 

miniatures in total. Francisci took models for 

elaboration from Slovenské spevy ([Slovak Songs], 

1880 – 1926), a collection which developed from the 

largest organised initiative of collecting in 19th century 

Slovakia. In the history of Slovak music these 

adaptations demonstrate the transition from simple 

harmonisations with a practical function to the 

individual approach of the composer, adapting the 

folklore model with emphasis on the aesthetic function.    

2. Ethnomusicological point of view 

The first part of the paper explains the results of an 

ethnomusicological analysis of the folk tunes which 

served the composer as models for adaptation. Based 

on the analytic system of the Slovak 

ethnomusicological school (J. Kresánek, A. Elscheková 

– O. Elschek), the style layers of Slovak folk music are 

defined and their representation in the song repertoire 

chosen by the composer is identified. We focus 

particularly on some specific features of the folk tunes, 

which we will further confront with the compositional 

approach of Miroslav Francisci.  

3. Analytical point of view 

The second part of the paper presents the results of a 

harmonic analysis of the piano miniatures, with the aim 

of revealing the level of artistic input by the composer. 

In harmonising all types of songs Francisci attempted 

to use cadence progressions and functional harmony 

based on major and minor keys, while also employing 

more advanced relationships such as double dominants, 

modulations, deceptive cadences, chromaticisations 

and alterations, etc.   

In the analytic section the paper compares the results of 

a traditional analysis of harmonisations, which we 

present in a table listing all of the songs. The table 

includes names of songs, tonal keys of harmonisations, 

and harmonic points of interest connected with the use 

of  tonal cadence progressions.  

4. Preparation for future research of 

computer determination of chords and 

tonal keys 

The results presented there will be compared with 

a partial computerised (automatised) detection of 11 

basic types of chords (triads and seventh chords) in 

a number of songs. We also concisely introduce the 

idea of a computerised tonal analysis (in preparation), 

which could offer an automatised (computer) 

determination of major or minor key not only in these 

songs but in major-minor harmonised folk songs of any 

kind, including from other regions.   
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Song 

n. 

Song name Key Specialty Form 

72 Nichto nezná, 

nebude znac 

G major Diatonic melody, cadential harmony, unfinished 

cadence in e minor,  closure on dominant 

ab 

73 Pri Prešporku 

verbujú 

D minor 

-g minor 

Rubato, ornamentation, triplets, tonal uncertainty, 

deceptive cadence in d minor. 

ab 

(9b) 

74 Záhradka, 

záhradka 

G major Diatonic melody, ornamentation, 4 bars upper voice 

melody, 4 bars lower voice melody. Cadence with II. 

degree as subdominant 

ab 

(10b) 

75 V tej našej 

záhradke 

D major-A 

major-D major 

Simple cadential harmony, arpeggiated chords ab 

76 Letí, letí roj C minor-E flat 

major-c minor 

Simple cadential harmony, using Tonic and Dominant, 

in last cadence  II34 as Subdominant. Scale movement 

ab 

77 Zaviau vetrík 

cez dolinu 

a minor-C 

major-a minor 

Diatonic melody, cadence with altered chord in C 

major key g-b-d sharp-f. Quick scale movement (4x) 

a-ba 

78 Ide šuhaj po 

dvore 

b flat minor-A 

flat major-D 

flat major-b 

flat minor 

Modulating harmony, abnormally written chord of 

diminished 7 to Dominant in F minor as  e- g - b flat - d 

flat - f flat.  

aa1a2 

(9b) 

Figure 1. Segment of table of all 200 songs and their basic analytical information 

 

 

 

Figure 2:  example of printed score of one folk song, adapted for piano by Miloslav Francisci. Trávnice I.  
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1. INTRODUCTION 

The Portuguese Court arrived in Brazil in 1808. Among 

other news, they brought to the New World several Euro-

pean salon dances, such as polka, schottish, waltz, ma-

zurka, quadrille, and redowa. Over the years, the last 

three fell into disuse, while the waltz, the schottish, and 

especially the polka became each time more popular. The 

polka was so strongly incorporated that some historians 

even considered it as a Brazilian creation (Pinto, 2014 

[1936]). 

Choro was originally born from a Brazilianized way 

to interpret this European repertoire by ensembles formed 

by flute, cavaquinho, and guitar. Its emergence dates 

back to the 1870s (Kiefer, 1979: 23), while its consolida-

tion as a genre returns to the 1910s (Cazes, 2005 [1998]: 

19)
1
.  

The repertoire of Brazilian composers of the mid-

nineteenth century such as Joaquim Callado, Chiquinha 

Gonzaga, Ernesto Nazareth, and Anacleto de Medeiros, 

includes polkas, schottisches, and waltzes, besides other 

new Brazilian creations, such as maxixe, Brazilian tango, 

and the homonym, choro
2
. At this point, music was not 

necessarily to be danced anymore, but to be contemplat-

ed. 

Among other aspects, Choro inherited from its Euro-

pean ancestors
3
 the tripartite structure in Rondo form 

(ABACA) with immediate repetition of each new section 

(therefore, AABBACCA), and contrasting tonalities be-

tween each part (see Tables 1 and 2). 

When in duple meters, each part has 16 bars divided 

in two equal halves (antecedent, which leads to the Dom-

inant, and consequent, which leads to the Tonic). When 

in triple meters (waltzes), this structure is doubled to 32 

bars in each section. 

For several years this structure was strictly respected. 

Pixinguinha, one of the Choro’s icons, took eleven years 

to publish his masterpiece, Carinhoso (1917), once it is 

formed only by two sections, having the B part 24 bars. 

                                                           
1 According to William Hanks, “when viewed as an interaction between 

social constructs and musical content, genre may be seen to offer: 1) a 

framework that a listener may use by which to orient themselves; 2) 
procedures to interpret the music; and 3) a set of expectations” (Hanks 

apud Beard & Gloag, 2005: 72).  
2 All of these genres are part of the musical and cultural manifestation 
called Choro. I therefore distinguish the specific genre choro with the 

lowercase initial. 
3 An African ancestry could also be verified especially concerning some 
rhythmic patterns, but it would be an issue for another paper. 

Nevertheless, this composition preserves phrases multiple 

of eight bars. 

Late Choro compositions, such as those written by 

another Choro’s master, Jacob Bittencourt, abandoned the 

C part, but carried on the preservation of symmetric 

phrases on both A and B parts. 

At the turn of the twentieth and the twenty-first centu-

ries the hence called “deformation” of the original Rondo 

form became each time more usual. The main objectives 

of this study are to map the route of these formal defor-

mations until the Choro produced nowadays and to verify 

if these new compositions could still been considered as 

Choros. 

The title of this paper, Crossed-Eyed Choro [Choro 

vesgo] is inspired by a piece made by Zé Barbeiro (b. 

1952), a Choro composer and seven strings guitar player 

based in São Paulo, who has currently modifying Choro’s 

traditional conceptions among his more than 220 works. 

2. METHODS 

The method employed in this paper is the statistical ap-

proach based on Choro canons composed from 1910 to 

2015. The wide range of the chronological period is justi-

fied because only a reduced number of compositions 

from the mentioned period are not structured on the Ron-

do form. Formal music analyses of this repertoire were 

made based on titles directed to the study of structural 

aspects on Classical Music (Berry, 1966; Caplin, 1998; 

Mathes, 2007), and on Choro (Almada, 2006, 2012). 

3. RESULTS 

The results show an increasing number of formal defor-

mations over the years with the use of complex composi-

tional procedures, such as asymmetric and mixed metrics, 

prolongations or ruptures in motifs and cadenzas etc. 

4. DISCUSSION 

What are the causes of the abovementioned defor-

mations? Is it derived from the contact with other musical 

genres? Could it indicate the desire of dissociating Choro 

with its European roots? 

5. CONCLUSIONS 

In conclusion, I reflect about the arising of a new stylistic 

school of Choro, which has been orally called as Con-

temporary Choro.  

Proceedings of the 7th International Workshop on Folk Music Analysis, 14-16 June 2017, Málaga (SPAIN) 
ISBN: 978-84-697-2303-6

130



  

 

 

 Part A Part B Part C 

Harmonic 

relationships 

possibilities 

Major 

Keys 
I 

vi 

V 

IV 

 

Minor 

Keys 
i 

III 

I 

I 

III 

VI 

Table 1. Some harmonic relationships possibilities in 

three-part Choros. 

 

 Part A Part B 

Harmonic  

relationships  

possibilities 

Major 

Keys 
I 

vi 

IV 

III 

Minor 

Keys 
i 

III 

I 

VI 

Table 2. Some harmonic relationships possibilities in 

two-part Choros. 
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1. INTRODUCTION 

This abstract entails a brief metrical analysis of “Es-
perando na Janela” (2000), a sample of Forró music, 
which lies at the heart of Brazilian northeastern folklore. 
In this research, I explore this song’s meter and hypermet-
ric structure, with special attention to how its text and mu-
sical clothing allow for a metrical shift, thus requiring hy-
permetric reinterpretation on the part of the listener. I will 
also discuss potential impacts of this shift on forró dance. 
This will finally lead to a brief investigation of the percep-
tion and reinterpretation of hypermetrical shifts rooted in 
phenomenology. 

2. FORRÓ: STYLE AND HYPERMETERIC 
STRUCTURE 

Forró can be regarded, along with many other hybrid 
forms, as an amalgamation between baião (as popularized 
in the Brazilian northeast by Luiz Gonzaga in the 1940s) 
and the Jamaican reggae. In its slow version, frequently 
referred to as xote, forró is a musical form that inherits its 
basic formative elements from European ballroom dances 
both in tonal and hypermetric structure. Thus, at a hyper-
metric level, it counts on duple, cyclic, metrical structural 
organizations. Generally, musical phrases will be multi-
ples of 4 in number of bars, frequently displaying a [8 + 
8] set up. The hypermetric structure thus, is perceived as 
falling on the downbeats of each set of 8 bars. 

3. HYPERMETRIC SCTRUCTURE IN 
“ESPERANDO NA JANELA” 

In the example analyzed in this abstract, however, the 
hypermeter suffers a shift, due to an elongation to the text 
and, consequently, to the stanza as a whole. Figure 1 illus-
trates the text and its musical accents. Figure 2 shows an 
organization of four metrical cells of four bars each, fea-
turing a [(4 + 4 + 2) + (4 + 4)] organization. The symbols 
used in Figure 1 and 2 are the same so as to emphasize the 
metrical shift as occurring in text s well as in the overall 
structure. 

The normal expectation is for m. 9 to be accented 
(Figure 2). Instead, the text has one more verse, which does 
not meet the listener’s “expectation” (as I will discuss be-
low), thus elongating the second rhythmic cell. This results 
in a metrical shift delayed by two bars featuring, ultimately 

a [10 + 8] structure, hence disrupting the usual (or ex-
pected) metrical structure in forró music. 

4. HYPERMETRIC SHIFTS AND PERCEPTION 

Phenomenologically speaking, the perceptual experi-
ence of this significant metrical shift bears no immediate 
influence on dancers, as the dance steps of forró music are 
based on the lowest metrical unit: the beat. This hypermet-
ric shift has implications, however, for the listener. Other 
examples are also found throughout other forms in tonal 
music repertoire of various places, throughout history. 
Since most examples of the forró form will have an [8 + 8] 
structure, this additional elongation is promptly noticeable 
and causes a building in tension as the refrain approaches. 

The phenomenology of perception of hypermetric 
shifts, in cases like forró music—which normally relies on 
a very simple and uncomplicated metric structure—may 
be defined in terms of a three-step perceptual model that 
can be understood in time. This model is based on the cul-
turally constructed economy of tonal musical (1) expecta-
tion, (2) reality, and (3) potential reinterpretation. Since the 
expectation is not met in this example, the careful listener 
is likely to feel the tension caused by the elongated metric 
cell. In facing the reality of the new hypermetric point, 
which now marks the beginning of the refrain, the structure 
then is reinterpreted retrospectively, phenomenologically 
speaking. 

5. FINAL THOUGHTS 

Hypermetric shifts can be recurrent in folkloric hy-
brid forms in any repertoire or style that derives from Eu-
ropean forms. This is to say that deviations in culturally 
constructed examples of formal, metrical, and tonal struc-
ture can play a huge role in the perception of folkloric mu-
sic in phenomenological terms. 
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Figure 1. Poetry/text in “Esperando na Janela” (2000). Strong syllables are shown in bold and take place at the begin-
ning of every musical bar. 

 

              

Figure 2. Hypermetric structure in “Esperando na Janela” (2000). Each individual block represents one (1) musical bar, 
normally organized in [(4 + 4) + (4 +4)] fashion, but here displaying an elongation. Black circles represent the hypermeter. 
Black squares indicate the accents at an intermediate level. The “+” and “-” symbols represent metrically strong and week 

bars, respectively, at an even lower metrical level. 
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RASPBERRY PI + LEGO = FOLK MUSIC DEMONSTRATOR 
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ABSTRACT 
 
Within the context of art music, it takes years of practice allied 
with formal musical education to master playing an instrument. 
Folk music, on the other hand, is transmitted from generation to 
generation by processes such as imitation and mimicking akin 
to oral tradition in storytelling [1]. In this work, we describe a 
modular system for music generation that allows tactile user 
interaction with musical parameters while providing both sonic 
and visual feedback. The system (generation component) uses 
3D printed LEGO pieces to control MIDI [2] signals that propa-
gate through the beat and melody generation modules synchro-
nized by a master clock. The rhythm matrix provides visualiza-
tion of the sonic output of the generation component in the style 
of a sequencer. User interaction combined with visualization 
leverages the power of practice in folk music to learn music 
theory intuitively. It is easy to generate musically interesting 
patterns and fun to interact with the system, which motivates the 
user to keep exploring the musical possibilities while learning. 
 
Keywords: Interactive Music, MIDI, Modular Audio system, 
Musical education, Raspberry PI, LEGO 

1. INTRODUCTION 

It is widely agreed upon that mastering a musical instru-
ment takes years of practice and musical education. On 
the other hand, folk music is traditionally transmitted 
orally from one generation to the next. Folk music com-
monly features relatively simple repeating patterns that 
lead to a complex musical structure when combined. 
There have been proposals that exploit Folk music’s tra-
dition to learn by practice. For example, the work de-
scribed in [3] allows the user to load, play, and edit dif-
ferent rhythm loops separated by instruments. 
 
The system proposed in this work uses hardware to man-
age the pattern-generating functionality. Raspberry PI 3 
was chosen as the main brain for the system. Due to its 
‘1.2GHz Quad-Core ARM Cortex-A53’ processor, it can 
handle the MIDI protocol and hardware reading with no 
effort. It also provides flexibility for further functionali-
ties such as buttons, LEDs or additional inputs/outputs. 
3D printed LEGO bricks are the key to control said loops. 
 
Figure 1 shows a block diagram illustrating the four core 
modules of the proposed system, namely the clock, the 
rhythm box, the melody box, and the VST. The clock 
generates the first data stream that controls all the subse-
quent elements. Both beatbox and melody box are able to 
repeat the input data to the output and adding its own data 
to the stream, which makes them independent of the posi-
tion within the chain. The final element is a VST [4] that  
 

 
reads all the MIDI data and plays real sounds, according 
to the data received. 
 

 
Figure 1: System chain description 

2. SYSTEM DESCRIPTION 

2.1 Clock 
The clock controls the ‘beats per minute’ (BPM) of the 
loops. Its MIDI dictionary is not long, where the most 
important messages are ‘timing clock’ and ‘start’. The 
‘timing clock’ message is sent periodically. Every twen-
ty-four of these messages, a quarter-note is played. That 
allows the beatbox and the melody box to play quarter 
notes at an exact BPM. The ‘start’ messages are sent at 
the beginning of every loop. The following elements wait 
for the first ‘start’ message to arrive, and use it to know 
when to start playing the pre-set pattern. 

2.2 Beatbox 
The next item in our chain is the beatbox. It repeats the 
MIDI stream coming from the clock. The beat loops are 
controlled by a 4 x 16 matrix similar to the one in Figure 
2. Each row controls one type of beat. In the example, we 
could control the patterns of the kick, clap, closed hi-hat 
and open hi-hat. For each quarter-note, only one column 
of the matrix is read and played. 
 

Proceedings of the 7th International Workshop on Folk Music Analysis, 14-16 June 2017, Málaga (SPAIN) 
ISBN: 978-84-697-2303-6

134



  
 

 
Figure 2: Rhythm matrix 

By placing the LEGO bricks into one spot of the matrix, 
the spot gets “activated” and will generate the corre-
spondent beat. Figure 3 features the same pattern as Fig-
ure 2, made out of LEGO bricks. One of the instruments 
can be sacrificed in order to use that row as an ‘expres-
sion control’ such as marking the strong beat within the 
loop, and making it sound louder. 
 

 
 

Figure 3: The Beatbox 

2.3 Melody box 
The melody box features the matrix described Figure 2, 
but the main difference is that the lower row can recog-
nize stacked LEGO bricks as shown in Figure 4.  

 
Figure 4: The melody box 

Every stacked brick represents a half tone. Stacking 
LEGO pieces allows the user to intuitively create melo-
dies using the visual interpretation that higher stacks gen-
erate higher pitches. Arpeggios and scales can be seen 
and spotted like a staircase. The first pentagram of Figure 
5 illustrates the music transcription of just the lower row 
of the matrix. For the first four quarter-notes we have: 
(1st) one LEGO brick which means C, (2nd) three bricks 
which means D, (3rd) five bricks which means E and 
(4th) silence. The other rows control which chords are 
going to be generated. In our example, the 3rd row of the 
matrix generates minor chords when checked and the 4th 
generates major chords. Following the example, the se-
cond pentagram of Figure 5 now includes the newly gen-
erated major and minor chords. 
 

 
Figure 5: Music transcription 

2.4 VST 
The last part of the chain can be any VST. In our imple-
mentation, the VST chosen was a computer with a free 
DAW and VST plugins. The current implementation uses 
a drum machine for the beatbox and flute synth for melo-
dies. The beatbox and the melody box are digitally split 
into 2 different MIDI channels. The drums are sent on 
channel 10 and melodies on channel 1, so that the whole 
data stream can be played by the same VST. 

3. CONCLUSIONS 

Currently, the system is mounted and running on the 
breadboard as shown in Figure 6. It is easy and fun to 
generate musical rhythms but it has certain limitations 
regarding what can be achieved musically. Ideally, the 
system should be able to generate more complex patterns 
and the user should be able to store a MIDI template. In 
the future, more tracks would be added to each module in 
order to increase functionality.  

 
Figure 6: Breadboard prototype 
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